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Abstract. We present the Malware - O - Matic analysis platform and
the Data Aware Defense ransomware countermeasure based on real time
data gathering with as little impact as possible on system performance.
Our solution monitors (and blocks if necessary) file system activity of
all userland threads with new indicators of compromise. We successfully
detect 99.37% of our 798 active ransomware samples with at most 70 MB
lost per sample’s thread in 90% of cases, or less than 7 MB in 70% of
cases. By a careful analysis of the few false negatives we show that some
ransomware authors are specifically trying to hide ongoing encryption.
We used free (as in free beer) de facto industry standard benchmarks to
evaluate the impact of our solution and enable fair comparisons. In all
but the most demanding tests the impact is marginal.

1 Introduction

Ransomware is a type of malware that prevents legitimate users from accessing
their machine or files and demands a payment for restoring the functionalities of
the infected computer. There are two classes of ransomware: the “simple lockers”,
which block the usage of the computer, and “cryptors”, that encrypt files on the
computer. In the case of encryption-based ransomware, the user data can only
be restored with the secret key(s) used during the attack.5

This class of malware has existed for a few decades [32], but the number of
attacks has increased drastically over the past couple of years [25]. The latest
notable examples are the WannaCry and the Nopetya attacks. However, recent
findings suggest that Nopetya is a wiper with ransomware-like appearance. Mi-
crosoft is concerned by the ransomware threat and plans to add a controlled
folder access feature in the next operating system update [3].

Recent advances have contributed in the current proliferation of ransomware.
Command and control (C&C) servers can be protected through the use of do-

5 Usually the encryption keys are themselves encrypted with an asymmetric cryptosys-
tem, the ransom must be paid in order to get the corresponding private key.



main generation algorithms or The Onion Router (TOR) network. Popular ap-
plications have been diverted from their legitimate usage: Imgur [27], Twitter
API [1], and Telegram Bot API [12] have been used to implement a C&C. Bitcoin
and other cryptocurrencies (e.g, Zcash, Ethereum) facilitate ransom processing
and handling. Similarly to most modern malware, current ransomware, hinder
detection and analysis, through packing, virtualization, Windows Management
Instrumentation (WMI) queries or obfuscated API calls. On March 28, Trend
Micro discovered a new technique used by the Cerber family to evade static
machine learning solutions [28]. A generic efficient defense mechanism seems
challenging, but encryption-based ransomware have a clear common semantic
that can be taken advantage of: they encrypt user data.

Similarly to recent approaches [5, 13, 14, 23], reporting satisfying detection
rates, we propose to monitor file activity. Since it has already been proven a
valid approach in terms of detection, our main goal in this paper is to show
that a good detection rate can be achieved with little to no impact on sys-
tem performances. To this end we limit our monitoring to a minimum. In order
to reduce the impact on detection with a low rate of false positive, we use
the chi-square goodness-of-fit test instead of Shannon entropy (i.e, sensitive to
compressed chunks of data [17]). We also achieve system completeness and fine
granularity by monitoring the whole file system for all userland threads. In order
to evaluate our prototype implementation, Data Aware Defense (DaD), under
realistic conditions, we developed a bare-metal analysis platform, Malware - O -
Matic (MoM), and ran it on a large and heterogeneous (compared to the littera-
ture) live ransomware collection. We used de facto industry standard benchmarks
to get a pertinent and reproducible assessment of the performance penalties.

Related work are presented in section 2. Section 3 compares different sta-
tistical tests and their effectiveness to detect encryption. DaD, our ransomware
countermeasure is introduced in section 4, a significant effort is made to tackle
the performance bottleneck. We evaluate its impact on the protected system
performance in section 5 and its effectiveness in section 6 together with a de-
scription of our bare-metal automated malware analysis platform, MoM, and a
discussion on our findings. Section 7 concludes the paper.

2 Related Work

Detecting malware is of prime importance. The main deployed approaches are ei-
ther static pattern-based signatures, or behavioral signatures dynamically checked
in a sandboxed environment. Unfortunately they rarely cover new malware or
even new variants of known malware. The challenge is to design fast detection
schemes that cover many samples with no false positives.

The subfield of ransomware countermeasures is relatively young. On top of
classical malware approaches, one can rely on the specific common behavior of
ransomware: they encrypt the victim’s files. Dynamic solutions found in the liter-
ature are divided in two parts as suggested by Kharraz et al. [14]: cryptographic
primitives hooks (i.e, user space) and low level disk activity monitoring (i.e, ker-



nel space). One targets the cryptographic primitives as an essential gateway for
ransomware whereas the second focuses on the system consequences.

In 1996 Young et al. [33] implemented a proof of concept “cryptoviral ex-
tortion” based on the Microsoft’s Crytographic API (CryptoAPI). Nowadays a
significant number of ransomware do indeed use the CryptoAPI to perform file
encryption. This API enables the use of specific cryptographic providers, Palisse
et al. [20] implemented their own and forced its use to get a trace of all crypto-
graphic operations. PayBreak [15] live solution makes use of dynamic and static
cryptographic hooks. A key escrow system is implemented and allows complete
file recovery. However only symmetric-key encryption is considered and some
obfuscation techniques will defeat the hooks, according to the authors. More-
over the static hooks need a prior knowledge of the libraries. Both papers suffer
from two critical limitations: any ransomware that will embed its own crypto-
graphic primitives bypass the solution (e.g, AES-NI [22]) and nothing prevents
the ransomware to detect the hooks or the redirection.

Other approaches, like ours, focus on disk activity thanks to a file system
driver. UNVEIL [13] detects ransomware by computing the increase, in term
of Shannon entropy, between data read and written to disk by the same pro-
cess and is also able to detect desktop locker, a benign type of ransomware.
CryptoDrop [23] relies on entropy too, but also takes into account file type
changes and a file similarity score. ShieldFS [5] applies machine learning to the
disk activity. Features are selected from millions of disk I/O requests gathered
from normal usage and ransomware attacks. The solution is composed of three
drivers. One in charge of file recovery: for each write and renaming operations
the corresponding file is backed up. The second detects cryptographic materials
embedded in processes. Finally the third performs detection thanks to random
forests mixed with incremental models which takes into account the short and
long life of a process.

The three report good detection rate, over 96%, and almost no false positive
on their respective data sets. Concerning the impact on system performance UN-
VEIL and CryptoDrop give little information. The former is presented as an
analysis tool and not a live solution, the authors of the later “believe that with
future optimizations, CryptoDrop can be run on a live system with a small
overhead.” and report a 9ms overhead per write operation without specifying
their evaluation procedure. There are more information on ShieldFS perfor-
mance overhead. The time taken to open then read, or open the write, files of
increasing size (from 1KB to 128MB) is measured. Using hard disk drive they
get a 180% to 380% overhead if files need to be backed up or 30% to 90% if not.
A “typical” overhead is also reported, unfortunately the evaluation procedure is
unclear and hardly reproducible: they extrapolated a typical overhead from IRP
logs taken from five users, resulting in an average estimated overhead of 26%.

Dynamic monitoring of file system activity seems to be the most promising
approach to defend against ransomware. Indeed, the Intel AES-NI instructions
defeat the approaches centered on the cryptographic libraries proposed in [15,20].
The remaining challenge lies in an efficient implementation on a live system.



One approach would be to limit the level of monitoring and focus on a single
efficient distinguisher, at least at first, only suspicious threads need to be closely
monitored.

3 Statistical Tests for Ransomware Attacks Detection

Ransomware involve a large number of ciphertext going through the file system;
to detect such behavior, statistical tests can be used. The main idea is that
ciphertext content distribution should be uniform. A one sample goodness of
fit (GOF) test measures how close an information source is to a theoretical
probability distribution function, also known as the “model”. In practice, one
data set F is compared to a known distribution function G and disproves or not
the null hypothesis H0 : ∀x, F (x) = G(x).

We do not prove that both data sets come from a single distribution function
but rather that there is no significant difference between them. The objective
is to figure out which indicators of compromise is the most relevant to detect
ransomware attacks in real time.

Shannon Entropy It is a measure of the uncertainty of a random variable. Lots
of disorder raise high entropy and structured data low entropy. The entropy of
X a discrete random variable from the alphabet Ω = {x1, x2, . . . , xn} with the
probability distribution function p(xi) at xi is: H(X) = −

∑n
i=1 p(xi) log p(xi).

Chi-Square The chi-square goodness-of-fit test (χ2) is a test of distributional
accuracy, it measures how closely a set of numbers follows a particular distri-
bution. It is a non-parametric statistical test, meaning that no assumption is
done on the samples distribution. The observed sequence of data is considered
as discrete and arranged in a frequency histogram [[0; 255]] with the degree of
freedom v equals to 255 (i.e, number of possible outcome minus one). Suppose
that Ni is the number of hit observed for the bin i, and ni is the expected num-
ber according to a known distribution function. The formula for calculating the
one-sided χ2 test is:

χ2 =
∑
i

(Ni − ni)2

ni
(1)

A large value indicates that the null hypothesis is not likely verified, the Ni

can not be drawn from the ni. The significance level of the test denoted αTW,
is the probability of rejecting the null hypothesis when it is true. Traditionally,
experimenters have used the 0.05 level (e.g, biology), thus we choose the same.
The observed test statistic is compared to a boundary value, called the critical
value, uniquely determined from the degree of freedom (or equivalently the size of
the alphabet) and the desired significance level. If the χ2 result is more extreme
than the critical value [10], the null hypothesis is rejected.



Discussion The robustness of the tests need to be checked against real world
conditions (i.e, small and large samples). Previous papers [5, 13, 23], use the
plug-in method (i.e, discrete symbols in histogram bins) to estimate the Shan-
non entropy. Nevertheless a study on TorrentLocker [17] shows that the Shannon
entropy is not a good distinguisher especially with respect to JPEG compres-
sion6. Achieving encryption detection on compressed files that already have high
entropy is a non-trivial task. The χ2 test on the contrary can distinguish ran-
domness (or encryption) from some compression schemes and is thus a more
relevant statistic as shown in appendix tables 4 and 5. For that reason we use it
to detect suspicious behaviors in the next sections. No extensive study of a ran-
somware solution embedding the χ2 has been presented earlier, but this statistic
is already used in numerous applications [6, 31].

A practical issue remains, like all statistical tests, the χ2 test is not accurate
on small samples. A good practice is to have at least five elements in each bins of
the histogram, but we can reasonably think that this will not happen plenty of
time. In this case, the test statistic will only reflect the small magnitude of the
expected frequencies. To fix this problem we made the choice that the solution
favor false positives over false negatives, by also computing the χ2 test for small
data. Moreover, the number of bytes involved in the computation is limited to
10,000. Indeed, if we do not set a limit, a zip bomb [11] can be used to crash or
slow down our solution.

4 Towards a Generic and Practical Ransomware
Countermeasure

In this section the architecture of Data Aware Defense is detailed, a file system
driver for Microsoft Windows. An important part of the contribution is the
usability of the solution, furthermore it can be used against zero-day ransomware.

4.1 File System Activity Monitoring

Windows, as most modern operating systems, splits its memory in several re-
gions with different privilege requirements. The kernel mode (ring 0) has a high
privilege level and is responsible, among other things, for managing disk opera-
tions.

Standard applications run in userland (ring 3), they are much less privileged
and cannot perform disk operations directly. Instead they call the corresponding
service from the Windows kernel, let the kernel manage the privileged operations,
before safely returning in the userland application code. This separation ensures
that no userland code directly manage critical operations in the system. To
complete this security feature the 64-bit versions of the OS requires all kernel
mode code to be signed by Microsoft to be accepted.

6 They use the Kullback-Liebler divergence instead but do not introduce an imple-
mentation.



Up to now, to the best of our knowledge ransomware live in userland. That
is why a countermeasure in kernel space can not be tampered with by malicious
code and is fully transparent. Users interactions with files are ultimately mapped
to operations in the kernel. On top of this stack stand the I/O manager and at
the bottom the file system driver (ntfs.sys). Microsoft offers a file system drivers
framework [18] that allows third party developers to add functionalities between
the two previous layers. Such component is called a file system minifilter driver
and it is managed by the filter manager. The position of each minifilter driver
in the I/O stack is defined by its “altitude”. A minifilter driver that performs
full disk encryption is below an anti-virus filter and thus avoid false positive
detection of ransomware-like behavior. A minifilter driver can inspect all the
operations that target the disks, regardless of whether the requested operation is
an I/O request packet (IRP) or a fast I/O. In this context we are able to monitor
write, read operations and so on. However a clever usage of such functionalities
has to be done, otherwise a significant performance penalty occurs [23] and the
solution can not be deployed in real world. Our file system minifilter driver has
been extensively tested on Windows 7 and 10, for the 32 and 64-bit versions and
follows the Windows Driver Model (WDM).

4.2 Implementation Design

In order to catch malicious behaviors efficiently we restrict our monitoring to
write and information operations. We want to demonstrate that detecting ran-
somware behaviors with only two callbacks on the I/O requests is possible, while
previous solutions [5,13,23] have at least twice as many callbacks. The so-called
information operations allow to change various information about a file object,
create a hard link, change the file position or the file name. We block all the
information operations once a thread is marked as malicious to prevent aggres-
sive files renaming. But without malicious activity, the information operations
are always accepted and are not used to construct our compromise indicators.
For each intercepted write operation the time spent in the callback function is
minimized by collecting only the essential information. We are only interested
in the content of the buffer that is passed through the file system stack, its
size, offset, the corresponding absolute file name, process name, process id and
thread id. This information is then copied to nonpaged memory and passed over
to a new dedicated thread that is not part of the file system stack. Only the
indispensable data is copied, not the thread context coming from the operation.
As a consequence, write operations are immediately authorized to go through.
Such features allow us to monitor all file system trees without excluding some
assumed trusted threads. So far, we are the first to inspect the I/O operations
with a thread granularity. It is a significant improvement in case of malicious
code injection into a benign process. The Cerber ransomware already used a
particular code injection technique, named process hollowing [28]. All costly
computations are deferred to threads running at the lowest kernel priority level.
This model solves the time restriction for the statistical computations and the
synchronization deadlocks on shared resources.



Once the compromise indicator (e.g, χ2) is obtained on the corresponding
data we update an internal structure related to this thread behavior in nonpaged
memory. This structure is stored for each thread of each process. To reduce the
memory footprint, our own garbage collector has been implemented. All tracked
information in memory can be exported to disk as a JSON file.

4.3 A Single Indicator of Compromise

To build an efficient filter, a sliding median on the last fifty write operations is
computed. The goal of this basic statistic is to capture, for each thread, the ongo-
ing file system behavior: it gives us a measure of central tendency. No assumption
is made on the I/O patterns observed. This elementary statistic is low cost and
does not involve complex calculations. Furthermore by monitoring the whole file
system we have more chances to only lose files that did not belong to the user’s
important paths (e.g, Windows Defender, Python libraries, $Recycle.Bin).

At runtime if the χ2 median go beyond the threshold, we suspend the cor-
responding process and collect information for postmortem analysis. We take
advantage of the process suspension (i.e, malicious code will not notice) to dump
from RAM the Portable Executable (PE) file and the committed pages of mem-
ory that belong to this process threads. All the process threads are stopped
to ensure consistency of the memory dump, especially in case of self-modifying
code. Finally, the thread that triggered the dump is tainted as malicious and all
subsequent write and renaming operations are blocked for this particular thread.

Section 3 presents the χ2 test. The significance level αTW is set to be small (i.e,
0.05). It corresponds to the probability of rejecting the null hypothesis when it is
true (i.e, type I error). This parameter also called the “testwise” alpha is relevant
for one given hypothesis test. The sliding median is based on fifty consecutive
χ2 tests. Thus, the “experimentwise” alpha is the probability of having one or
more errors of type I within the hypothesis tests. The experimentwise error rate
can be calculated using the Bonferroni threshold [2] as follows:

αEW = 1− (1− αTW)K (2)

K is the number of uncorrelated hypotheses being tested at the αTW level.
However, the experimentwise error rate is the same than the testwise error rate
when only one hypothesis is tested for a given dataset. Moreover, it is likely that
for each thread the write operations are correlated to each others. Therefore, the
experimentwise error rate is equal to 0.05.

5 Experiments: Performance Evaluation

An important contribution in this paper is to address the performance penalty.
This section shows that our solution is the first live ransomware coutermea-
sure based on a file system driver able to tackle the performance bottleneck.
The workload model is office work. In this configuration the solution is almost



imperceptible. In the following parts, the global impact of the solution on the
system is investigated with de facto industry standards software7. No formal
studies of the in-memory footprint have been conducted, it can be considered
negligible on consumer computers (i.e, less than 50 Mb). All test were run under
Windows 7 with 4Gb of RAM and a SSD8. In order to focus on performance
and not interfere with the benchmarks, we deactivated the blocking mechanism
of our solution.

5.1 Disk Performance

To precisely measure the driver impact on disk, we used the Windows Perfor-
mance Toolkit (WPT) [19]. It produces in-depth performance profiles of Win-
dows operating systems. We set the minifilter I/O activity scenario for two hours
and a half and obtained 11348 writes that give us ≈ 133ms spent in total in the
file system driver. Thus, an average of 11.7µs per operation. During the profil-
ing, normal work activities were simulated, with office suite use, downloads and
compression. CryptoLock [23] produces an overhead of 9ms per write oper-
ation, even without knowing their testing procedure, it is probably safe to say
that performance has been significantly enhanced by a factor of a few hundreds.

Additionally a second test based on a free software, CrystalDiskMark [7],
has been performed. Two types of write operations are considered: “Sequential”
correspond to large contiguous blocks of data and “Random” focus on small (4K)
blocks to random locations. As shown in table 1, with the Random 4K tests our
solution lead to a significant loss of performance but the resulting bandwidth of
9.5 MB/s is still reasonable. On an hard disk drive (HDD) the seek time and the
rotational latency create a bottleneck. Consequently, the Random 4K tests will
be bounded by the HDD mechanical limitations (i.e, 2.5 MB/s for the fastest
HDD 9), not the file system driver. On the other hand no performance loss is
observed when dealing with big chunks of data. Pushing the limit of the solution
on disk access do not create undesirable effects (e.g, freeze).

Table 1: CrystalDiskMark tests (in MB/s) configured with 5 tests passes, file
size of 2GiB, random data generation and 3 minutes interval time.

Write test Solution off Solution on Impact

Sequential 136.3 134.2 −1.5%

Sequential Q32T1 135.7 135.8 +0.07%

Random 4K 55.28 9.581 −82.66%

Random 4KQ32T1 122.0 65.48 −46.32%

7 We restricted ourselves to free (as in free beer) softwares used to assess performance
of personal computers to ensure pertinence and affordable reproducibility.

8 Windows 7 SP1 6.1.7601, Intel Xeon W3550, NVIDIA Quadro FX 1800, 4Gb DDR3,
Intel SSD 120 Go SATA III

9 http://hdd.userbenchmark.com/WD-Black-6TB-2015/Rating/3519

http://hdd.userbenchmark.com/WD-Black-6TB-2015/Rating/3519


5.2 CPU Performance

Due to the high number of threads that complete asynchronous jobs, the system
load needs to be considered. For this we used Geekbench 4 [9] that contains an all
in one test with different workload models and PCMark 8 [21] that is recognized
as an industry standard benchmark. For more details on the underlying tests
performed by the software please refer to their technical reports. We measure
initially (without our protection) a Geekbench overall score of 6625 (multi-core)
and 5841 after enabling the protection, for a performance loss of 11.83%. Con-
trary to the previous test, with PCMark the system impact is less palpable. We
executed two built-in scenarios, “work” that measures basic work tasks on office
machine and “home” that focus more on media capabilities (e.g, gaming, photo,
chat). As shown in table 2, only a very small difference occurs (less than 1%).

Table 2: PCMark 8 benchmark score.

Test Solution off Solution on Performance loss

Work conventional 2.0 2859 2845 −0.49%

Home conventional 3.0 2728 2705 −0.84%

5.3 Discussion

Precise comparison with other contributions [5,23] is difficult: we can not repro-
duce their evaluation procedure (when they have one) and we were not able to
apply our own10. Still, with a significant impact only on the most demanding
test that is only exhibited when using solid state drives, we can safely assume a
significant improvement over previous work and report that DaD is practical.

6 Experiments: Ransomware Detection

In this section, the experiments demonstrate that Data Aware Defense (DaD)
detects and blocks in real time, most of the ransomware in the collection (i.e,
99.37%) with a low number of bytes lost. Then we discuss about the ransomware-
like behaviors that lead to false positives, and finally review two false negatives
that bypass the countermeasure using mimicry attacks.

Before delving into the experimental evaluation of our approach and an anal-
ysis of ransomware behavior in the next section, let us present our malware
analysis platform that was used to conduct those experiments.

6.1 Malware - O - Matic

We designed and built Malware - O - Matic (MoM), an automated analysis plat-
form that does not use a virtual machine, while keeping all the main features

10 We solicited the authors and got a negative answer from [5], and no answer from [23]
as of submission.



of a regular analysis framework. Such fully bare-metal platform is built on top
of two open source software, Clonezilla [4] and Viper [29], which makes it re-
producible. The platform is made of a single master server and several slaves,
each one running the analysis loop in parallel. The whole system is on a ded-
icated network under the supervision of the network autonomous system (AS)
and directly connected to the Internet, to emulate a typical home network. The
loop itself consists in a few simple steps: setup of the monitoring environment,
malware execution, results gathering and storage, cleanup. In the first step the
slave download a script from the master, that will act as instructions about how
to conduct the next analysis. Once the procedure is completed, the slave sets its
next environment and reboot for cleanup. The cleanup process simply consists of
flashing a clean disk image onto the slave’s drive. So far, MoM is able to analyze
up to 360 malware per-day with only 1 server and 5 slaves. The end goal of this
platform is to run uninterruptedly and thus automate the analysis of samples.

6.2 Experimental Setup

MoM is used in two distinct modes for the experiments: “passive” or “active”.
The first one, downloads a sample, executes it and according to a cryptographic
hash already determined on the user files, labels the sample as active if the hash
changes or discards it. The second mode, evaluates DaD ransomware counter-
measure (i.e, file system driver) with the samples marked as actives. With such
scenario, once the analysis is complete a set of information (e.g, PE file) is sent
to a remote server. To avoid evasion during the analysis, a corpus of files that
looks like a plausible user environment is built, thanks to the Digital Corpora
corpus [8] and manual additions. In the same way, a set of user interactions is
emulated (e.g, mouse, keyboard). Each run is fifteen minutes long. A Windows
7 SP1 32-bit snapshot is chosen as the operating system to be infected, the user
is logged in as administrator with the User Account Control (UAC) disabled.

The experiments are based on a long-term collection gathered from August
2016 to March 2017. A VirusShare archive dedicated to ransomware was used
in combination with daily crawling on online repositories [16, 30]. Such mixing
allows us to have an heterogeneous ransomware collection of 798 active ran-
somware (i.e, they encrypt the user’s files), decomposed in more than twenty
families, with numerous singletons. The previous studies due to their virtualized
analysis environment were unable to run the Cerber samples11. Our dataset is
not limited by the anti-virtualization techniques. Samples labeling is achieved
through the Avclass tool [24]. Detailed information about the collection can be
found in appendix, table 3. For each sample, a manual analysis has been per-
formed in accordance with its JSON log file to highlight irrelevant samples, but
also false positives and negatives.

11 PayBreak did, might be samples mislabeling.



6.3 Detection Results

DaD is only interested in the write operations on disk, with a thread granularity
and irrespectively of any signature. Such feature makes the solution agnostic
which is necessary to tackle zero-day ransomware. The solution successfully de-
tects 99.37% of our ransomware. Solely five circumvent the countermeasure. The
following activities are simulated during the evaluation: mouse move, keyboard
input and web browser usage. Only one false positive is encountered as seen fig. 1.
Up to 238K threads have been monitored during the samples evaluation. A very
important point is that DaD’s classification error rate is very low: 7.08e− 05.
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Fig. 1: The confusion matrix related to the suspicious (1) and non suspicious (0)
threads monitored by Data Aware Defense (DaD) during the samples evaluation.

To assess the effectiveness of DaD, an estimation of the number of bytes
lost across the ransomware collection is displayed fig. 2. One can notice that
for 70% of the samples’ threads, at most 6.5 megabytes (MB) are encrypted,
which is acceptable for most of the users. Unfortunately, considering 90% of the
collection, 70 MB is lost per-thread in the most extreme scenario. Depending
on the user needs, such loss can be tolerated, but it might be unacceptable for
businesses. Most of the samples are single threaded, respectively 76.88%.
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Fig. 2: The cumulative probability of the malicious threads for each thread num-
ber of bytes lost.

The detection is affected by the nature of the explored paths, and may be
more or less prompt to block a malicious thread. Indeed, the folders with a few
number of encrypted files set the sliding median far beyond the detection thresh-
old. The epidemic of ransom notes is to blame. Even when this scenario occurs



the malicious thread is successfully stopped. It demonstrates that monitoring the
whole file system makes our solution resilient. Moreover, the compromise indica-
tion, a χ2 sliding median on the last fifty write operations can be circumvented
if less than half of the thread activity is dedicated to files encryption.

An important observation that we made, is that different χ2 “layers” can be
distinguished on the disk. Each one corresponding to a specific behavior, such
as ransom notes and metadata appended to files. These patterns suggest a crite-
rion to distinguish reversible from non-reversible ransomware. Indeed, metadata
appended to files during encryption are visible on the file system and suggests
a chance to get the data back (e.g, authors implement the decryption routine).
Furthermore, no dissociation into separate threads has been observed for all the
three following tasks: files encryption, ransom notes and the metadata.

6.4 Ransomware-Like Applications

Experimental results point that the solution is effective to stop infection but
we did not discuss about limitations, in particular false positives and negatives.
The primary purpose was to design DaD as an practical and efficient first line
of defense against the ransomware.

False Positives Looking at the χ2 sliding median with a significance level,
αEW of 0.05, allows us to eliminate a significant number of false positives among
most of the traditional applications. DaD monitors about dozens of processes and
hundreds of thread while an user interacts with its machine. Few applications are
blocked, in such cases, it disables a particular task (e.g, update), not the entire
process. Moreover only very specific applications are able to obtain malicious file
system behavior: files compression or encryption, secure files deletion, browsers
startup and so on as shown fig. 3.
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Fig. 3: χ2 of the 100 first write operation of Mogrify (•), 7-zip (�), GPG4Win
(4), and µTorrent (◦).

Indeed, the solution is not yet able to distinguish compression from encryp-
tion and a false positive is raised with 7-Zip, GPG4Win, or µTorrent. Still, as
mentioned in section 3 we can distinguish JPEG compression. The χ2 statistic
corresponding to the images rewritten by the Mogrify software is far away from
the critical value (i.e, 293.24). In any cases, a major observation can be made:
only a single “layer” is present. The χ2 statistic alone is not sufficient to avoid



false positives. The ransomware business model is based on extortion, in order
to be paid, they need to make the ransom notes as visible as possible. Future
works should focus on this idea.

False Negatives The Data Aware Defense ransomware countermeasure focus
on very specific activities on disk that belong to ransomware behavior but not
exclusively. The underlying mechanics that comes with the ransomware to date
is well known and documented: they encrypt files. However, the ransomware
industry is very prolific and no one is immune to more stealthy behaviors, we
are faced with an arms race. For example, the specific problem of boot sectors
encryption (e.g, master boot record) is not addressed in this paper, a solution is
proposed by the Talos Group [26]. In addition, as outlined in Mbol et al. [17], if
an encryption algorithm preserving the distribution of the original files is used,
it will evade the solution because randomness is the root of the detection. The
ransomware which interleave malicious write operations with loops of unneces-
sary or redundant operations that look non random will go through DaD, as
shown fig. 4. Prior to block a malicious thread, DaD need to have a windows on
the last fifty write operations. A multi-threaded ransomware where each file is
encrypted by a unique thread can exploit this limitation. Finally, a kernel exploit
is a potential breach that ransomware might use to unload DaD and more, in
this scenario, the system is completely compromise.

Five ransomware samples among the collection (i.e, 0.62%) bypass the solu-
tion. Three Xorist samples used weak encryption algorithms (e.g, Tiny Encryp-
tion Algorithm). The last two samples behaviors are different than all we have
previously observed. Figure 4, illustrates such statements.
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Fig. 4: Two false negatives samples: Crysis and Purge. Both interleave each ma-
licious write operation with numerous garbage operations.

The Crysis sample does not write ransom notes, and after approximately
3,000 write operations begin to perform large write operations of 218 bytes.
Such operations with a zeroed buffer are repeated multiples times. The Purge
sample hide his malicious behavior through a set of heterogeneous write opera-
tions. For each encrypted files, the ransom note is rewritten with chunks of 128
bytes. In both cases, the sliding median is inefficient to detect the underlying
encryption process, the willingness of the ransomware authors is to hide the pri-
mary purpose of the application behind useless operations (i.e, mimicry attack).
The ransomware can not be seen any more like a simplistic version of malware,



in the future they will pretend to do something else than just encrypting files,
which was not the case so far to the best of our knowledge.

7 Conclusions

The Data Aware Defense is based on file system monitoring and no assump-
tions is done concerning the malicious I/O patterns. In addition we achieved
a thread granularity control on the system and do not restrict files protection
on a particular folder. The χ2 test by its own can replace the Shannon entropy
and catch up some of its weaknesses. Moreover our countermeasure is efficient
and can be deployed on Windows 7/10 machines with a reasonable performance
hit, with an average delay of 12µs per write operation on disk, a few hundred
times smaller than previous approaches. Our extensive experiments show that
the more sophisticated ransomware already use mimicry attacks. However we
successfully detect 99.37% of the samples with at most 70 MB lost per sample’s
threads in 90% of cases and less than 7 MB in 70% of cases.

These promising results in terms of performance and detection rate were ob-
tained thanks to single simple metric computed for all threads of all processes
running on the system, allowing us to track code injection attacks in particular.
False positives seem inherent to the approach: we are detecting large write op-
erations of random data. But its speed and low negative rate makes it a good
candidate as a first line of defense. Once a thread is deemed malicious, instead of
blocking disk accesses, other more costly metrics can be used to improve the false
positive rate without impacting performance, since it would not be computed for
all other threads. As an example, future work should focus on the distribution of
random (encrypted files) and constant (ransom notes) data. Once false positive
rate is small enough, an interaction with the user to eliminate the last ones seem
reasonable. Indeed ransomware have a very specific behavior and the average
user should know if she is encrypting all its files on purpose or not. Future work
should investigate which information to report to a user and if the approach is
practical.

Appendix 1: Ransomware Collection

Table 3: An overview of the active ransomware families used in the experiments
(i.e, 87.98%). More details at: http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html.

Family Samples

Teslacrypt195 (24.43%)
Cerber 135 (16.91%)
Xorist 125 (15.66%)
Bitman 101 (12.65%)
Zerber 27 (3.38%)

Family Samples

Yakes 25 (3.13%)
Deshacop19 (2.38%)
Locky 17 (2.13%)
Gpcode 13 (1.62%)
Gamarue 9 (1.12%)

Family Samples

Shifu 9 (1.12%)
Fsysna 8 (1%)
Shade 7 (0.87%)
Dalexis5 (0.79%)
Usteal 5 (0.79%)

http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html


Appendix 2: Empirical Tests

Table 4: Shannon entropy values with 10K files for each file type.

File types Minimum Average Maximum Variance

PNG 0.14 7.87 7.99 0.33
PDF 1.45 7.74 7.99 0.16
ZIP 3.21 7.93 7.99 0.07

Table 5: Chi-Square (χ2) values with 10K files for each file type.

File types Minimum Average Maximum Variance

PNG 275.72 1.69e+6 3.76e+9 2.74e+15
PDF 306.86 1.50e+6 5.07e+8 1.30e+14
ZIP 220.44 4.74e+5 9.11e+8 1.23e+14
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