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The radio technique for the detection of high-energy cosmic rays consists in measuring the electric field
created by the particle showers created inside a medium by the primary cosmic ray. The electric field is then
used to infer the properties of the primary particle. Nowadays, the radio technique is a standard, well-
established technique. While most current experiments measure the field at frequencies above 20 MHz,
several experiments have reported a large emission at low frequencies, below 10 MHz. The EXTASIS
experiment aims at measuring again and understanding this low-frequency electric field. Since at low
frequencies the standard far-field approximation for the calculation of the electric field does not necessarily
hold, in order to comprehend the low-frequency emission we need to go beyond the far-field approximation.
Wepresent in thiswork a formula for the electric field createdby a particle track inside a dielectricmedium that
is valid for all frequencies.We then implement this formula in the SELFASMonteCarlo code and calculate the
low-frequency electric field of the extensive air shower (EAS).We also study the electric field of a special case
of the transition radiation mechanism when the EAS particles cross the air-soil boundary. We introduce the
sudden death pulse, the direct emission caused by the coherent deceleration of the shower front at the
boundary, as a first approximation to thewhole electric field for the air-soil transition, and study its properties.
We show that at frequencies larger than 20 MHz and distances larger than 100 m, the standard far-field
approximation for the horizontal polarizations of the field is always accurate at the 1% level.

DOI: 10.1103/PhysRevD.97.103010

I. INTRODUCTION

Cosmic rays with energies >1015 eV cannot be directly
measured due to their low flux, so they are detected via the
particle showers they create when they enter the atmosphere.
The secondary particles present in the extensive air shower
(EAS) can give us information on the primary cosmic ray,
such as its arrival direction, its energy and, more recently, its
composition. There are three main detection techniques for
inspecting the EAS and elucidating the properties of the
primary particle. First, there is the surface detection tech-
nique, wherein the shower particles arriving at ground level
can be detected, and this sample of the shower is then used to
analyze the properties of the primary. Second, there is the
fluorescence technique. Whenever a particle shower passes
through the atmosphere, the nitrogen molecules within it
become excited and emit fluorescence light when they
deexcite. This fluorescent light can be detected on moonless
nights, and its luminosity is proportional to the number of
charged particles traversing a given region of the atmosphere,
allowing us to reconstruct the development of the EAS. And
third, we have the radio technique.
The radio detection technique of high-energy particles

consists in detecting, by the use of radio antennas, the electric
field created by the charged particles present in a particle
shower. The amplitude, ground footprint, arrival time, and

polarization of the electric field can be correlated to the
arrival direction, energy, and even composition of the
primary particle [1–3]. The radio technique is a well-
established technique as of today [4]. This technique was
proposed in 1962 by G. Askaryan as a method for detecting
cosmic rays and neutrinos [5]. It did not take long to observe
pulses correlated with showers measured by air shower
arrays [6], but it was abandoned due to several limitations
that prevented it from being as competitive as the surface
detection. With the advent of modern electronics, radio
detection and the interest it generated were reawakened.
Weknow today that the electric field createdbyEAScanbe

explained by the superposition of two effects. The dominant
effect is called the geomagnetic effect and it is induced by the
deflection of the charged particles by the geomagnetic field.
Positive and negative charges deviate in opposite directions,
creating a total current in the same direction that produces an
electromagnetic field with a polarization along the Lorentz
force direction, v ×B, with v being the shower axis andB the
geomagnetic field. The Askaryan effect is related to the
appearance of an excess of negative charge (electrons) within
the shower, which creates detectable electric field with a
polarization radial with respect to the shower axis. We can
find in [7] a theoretical description of these two effects and in
[8–10] data that evidence their existence and interplay to
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create the total electric field. Since a significant part of the
shower particles travel faster than the speed of light, relativ-
istic interference effects are also relevant, leading to the
appearance of a Cherenkov cone.
Most radio experiments detecting air showers nowadays

(for instance, CODALEMA [11], AERA [12], Tunka-Rex
[13] or LOFAR [14]) measure the electric field in the
[20–80] MHz band. This is due to the fact that the field
from EAS is usually coherent up to several tens of MHz,
and above 80 MHz we find FM radio emitters. However,
near the Cherenkov angle, the field can be coherent up to
GHz frequencies [15–17]. There are some complications
for measuring below 20 MHz, mainly the atmospheric and
galactic noise, and that is why these experiments have
chosen the aforementioned band.
Several experiments in the past have informed us of the

observation of pulses correlated with air showers at
frequencies below 20 MHz, but the results are not well
understood. The first detection of this kind took place as
early as in 1967 [18]. In 1970, research at Haverah Park
found an average low-frequency signal (at 3.6 MHz) of
300 μVm−1MHz−1, averaged over 400 showers [19].
However, a repeat run gave a null result [20]. In 1971
[20], a signal of about 1 μVm−1 MHz−1 at 1.98 MHz was
measured. According to the author’s estimation, the shower
energy was ∼2 × 1014 eV, which is incredibly low for a
radio-detected shower. This energy estimation allows the
author to conclude that a 1017 eV shower should present a
field strength of 500 μVm−1MHz−1, but the detection of a
∼2 × 1014 eV shower by a radio array seems implausible
even by today’s standards. In [21], a mean field of 2.5�
0.6 μVm−1MHz−1 was measured at 3.6 MHz, and with the
help of the shower size estimation and the hypothesis of
pure geomagnetic emission, the authors extrapolate
300 μVm−1MHz−1 at 1017, more than 1 order of magni-
tude larger than the standard 20–80 MHz emission. We
must point out that the measured fields so far had been of
the order of a few μVm−1MHz−1. In fact, [22] reports an
upper limit of 0.6 μVm−1 MHz−1 for a 1017 eV shower,
obtained with an antenna located λ=10 wavelengths above
ground, which is incompatible with previous estimations.
In spite of the controversy, later experiments reported

direct measurements of large electric fields. The Akeno
experiment [23] pursued even lower frequencies (26–
300 kHz) and found correlation of signals in that band
with signals at higher frequencies, with a typical amplitude
of hundreds of μVm−1 MHz−1, a measure the authors
repeated in [24]. EAS-RADIO [25], set up at EASTOP,
was able to measure again fields of the same order.
A discussion of these and more experiments and a brief

theoretical summary can be found in [26]. The experiments
and analyses cited therein agree that the standard calculations
used in radio experiments are not enough to describe the
measured field. Some mechanisms, such as transition radi-
ation created by an infinite track or deviation of particles in

the geoelectric field, do not seem to be favored by the data
[23,27]. Coherent deceleration of the shower front, also
called sudden death pulse (SDP) has been proposed in
[23,26,28] as ameans to explain the low-frequency emission.
This SDP is related to the transition radiation (TR) field.

A transition radiation field is, in general, the electric
radiation field created by a charge that travels within
several media. Since it is a radiation field, by definition,
it implies the far-field regime. In our case, we want to
calculate also the near-field component, so our problem is
rather the calculation of a transition field that reduces to TR
in the far field. Most closed formulas for TR, for instance,
Ginzburg’s formula, are valid for particles traveling on a
straight infinite line. These formulas can be applied as long
as the particle trajectory begins and ends at a distance from
the interface much greater than the observation wavelength.
Particles in an EAS are stopped in a few cm of soil, and
observation wavelengths for ground-based radio experi-
ments are always much larger than 30 cm, so we cannot rely
on these analytical formulas for our case even if the
observer is far away from the shower core. As an
approximation, we assume that the shower stops immedi-
ately when it reaches the air-soil boundary and we calculate
only the direct field without the effect of the boundary. We
call SDP approximation the field calculated with these
assumptions. When the observer is far enough from the
shower core, the standard shower emission is separated
from the SDP and we can identify it by its delay.
In order to measure again the electric field of an EAS at

low frequencies and shed light on the emission mecha-
nisms, the EXTASIS experiment has been set up at the
Nançay radio observatory. With a frequency band spanning
from 1.7 to 3.7 MHz and seven antennas with vertical and
horizontal polarizations hung at the top of 9 m high masts,
EXTASIS has already detected low-frequency pulses cor-
related with pulses in the [20–200] MHz band and with
events seen by a surface detector [29]. The data look like a
real cosmic-ray event, and the reconstruction of the arrival
direction in the [1.7–3.7] MHz band is in agreement with
the reconstruction in the [20–200] MHz band and the one
given by the surface detector. These data also hint at a larger
reach of the electric field at low frequencies. EXTASIS has
also among its goals the detection of the transition field
created when the shower reaches the ground.
One of the problems that arises is the correct calculation of

the electric field.Most of the theoretical formulas [30,31] and
standard codes used, such as SELFAS [32], ZHAireS [33], or
CoREAS [34], use the far-field approximation to obtain the
radiation field only. The far-field approximation holds when
the wave number k and the distance from emitter to observer
verifies kR ¼ 2πR=λ ≫ 1, which allows us to approximate
the electric field as a pure radiation field. At ∼1 MHz, the
wavelength is ∼300 m, which is comparable to the distance
from the measuring antenna to the shower core and axis. If,
moreover, we expect a noticeable emission from the shower
close to the core (as in the sudden death mechanism),
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the far-field approximation could not suffice. In particular,
for an antenna at 100 m from the shower core, kR ¼
2π · 100=300 ∼ 2, so near-field effects could be important
at the EXTASIS frequencies.
We begin by deriving in Sec. II a time-domain formula

for the field of a particle track valid for all frequencies. We
derive again the formula in frequency domain in Sec. III.
The time-domain and frequency-domain formulas are
compared to the far-field approximation or Zas-Halzen-
Stanev (ZHS) formula [30,35]. In Sec. IV we explain the
implementation of the exact formula in the SELFAS
Monte Carlo (MC) code. In Sec. V we show some
examples of the predictions of this formula for the emission
coming from EAS and give a range of validity for the far-
field approximation. We introduce the coherent deceler-
ation of the shower front or sudden death pulse and study its
properties in Sec. VI.

II. ELECTRIC FIELD OF A PARTICLE
TRACK IN TIME DOMAIN

A. Derivation of the formula in time domain

Our aim is to derive a formula for the electric field
emitted by a particle contained inside a shower. Since we
are operating at the quantum scale, we must justify the use
of classical electrodynamics. The trajectory of the particle
inside a particle shower is created by the interactions with
the medium that cause the particle to change direction and
speed almost instantaneously. Physically, however, there
must be a time related to the interaction below which the
use of quantum theory is imperative. Let us call this time
Δtq. We expect the frequency components of the field to be
valid until the observation frequency is comparable to
1=Δtq, and in this low-frequency region we can apply
classical electrodynamics [36]. Let us assume Δtq is related
to the Compton wavelength λC of the electron,

Δtq ∼
h

mec2
¼ λC

c
¼ 2.425 × 10−12 m

0.3 mns−1
¼ 8.09 × 10−12 ns;

ð1Þ
which implies that the order of magnitude of the maximum
frequency where the classical approach should work is

νclassical ≪
1

Δtq
∼
mec2

h
¼ c

λC
∼ 1.24 × 1011 GHz: ð2Þ

We are interested in radio emission below the THz, so the
use of classical electrodynamics is justified.
We begin with Maxwell’s equations for the potentials

inside a homogeneous, dielectric medium with permittivity
ϵ, independent of the frequency. Its refractive index is,
therefore, n ¼ ffiffiffiffiffiffiffiffiffi

ϵ=ϵ0
p

, and the speed of light in the medium
is cn ¼ c=n. Using the Lorenz gauge,

∇2Φ −
1

c2n

∂2ϕ

∂t2 ¼ −
ρ

ϵ
; ð3Þ

∇2A −
1

c2n

∂2A
∂t2 ¼ −μ0J; ð4Þ

where t is the observer time, Φ and A are the electromag-
netic potentials, ρ is the charge density, and J is the current
density. Equations (3) and (4) are similar to their vacuum
counterparts. Formally, we have made the changes ϵ0 → ϵ
and c → cn, so the formal solutions for the potential are the
usual retarded potentials with these substitutions,

Φðx; tÞ ¼ 1

4πϵ

Z
d3x0

1

R
½ρðx0; t0Þ�ret; ð5Þ

Aðx; tÞ ¼ μ0
4π

Z
d3x0

1

R
½Jðx0; t0Þ�ret; ð6Þ

where R ¼ jx − x0j and t0 is the retarded or emission time,
defined implicitly as

t0 þ 1

cn
jx − x0ðt0Þj ¼ t: ð7Þ

As long as our source is not superluminous, that is, as long
as its speed is less than cn, the speed of light in the medium,
the calculation of the field is as straightforward as in the
vacuum case. In the case of superluminous motion, we can
still use Eqs. (5) and (6) to derive the fields, being aware
that we can have several retarded times for a single
observation time: t0ðtÞ is a multivalued function. For the
superluminous case, Jefimenko’s equation for the electric
field is still valid, and can be written as

Eðx; tÞ ¼ 1

4πϵ

Z
d3x0

�
R̂
R2

½ρðx0; t0Þ�ret þ
R̂
cnR

�∂ρðx0; t0Þ
∂t0

�
ret

−
1

c2nR

�∂Jðx0; t0Þ
∂t0

�
ret

�
; ð8Þ

where R̂ ¼ x−x0
jx−x0j. Since the integrands are functions of x,

x0, and t we can cast the following property:�∂fðx0; t0Þ
∂t0

�
ret
¼ ∂
∂t ½fðx

0; t0Þ�ret
∂tðt0;x;x0Þ

∂t0 ¼ ∂
∂t ½fðx

0; t0Þ�ret;

ð9Þ

which, along with the fact that R ¼ Rðx;x0Þ inside the
integral (it is not a function of t or t0), allows us to rewrite
Eq. (8) in the following way:

Eðx; tÞ ¼ 1

4πϵ

�Z
d3x0

R̂
R2

½ρðx0; t0Þ�ret

þ ∂
∂t

Z
d3x0

R̂
cnR

½ρðx0; t0Þ�ret

−
∂
∂t

Z
d3x0

1

c2nR
½Jðx0; t0Þ�ret

�
: ð10Þ

We proceed now with the definition of our source. We
consider a particle track, which is the building block for all
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Monte Carlo codes that calculate the electric field of an
EAS within the microscopic approach. Let us consider a
neutral atom or molecule in which all the particles are
located approximately in the same point so that the charge
density in all of space is 0 before the time t1. At t1, a point
charge with charge þq separates from the particle with
charge −q at the position x1. The −q charge stays at the
position x1, while the charge þq travels in a straight line at
constant speed until it is suddenly stopped at t2, at the
position x2. This charge density can be written as

ρðx0; t0Þ ¼−qδ3ðx0−x1ÞΘðt0− t1Þ
þqδ3ðx0−x1−vðt0− t1ÞÞ½Θðt0− t1Þ−Θðt0− t2Þ�
þqδ3ðx0−x2ÞΘðt0− t2Þ; ð11Þ

where we have used the Dirac delta function δ and the
Heaviside step function Θ. The current density is, on the
other hand,

Jðx0; t0Þ ¼ qvδ3ðx0−x1−vðt0− t1ÞÞ½Θðt0− t1Þ−Θðt0− t2Þ�:
ð12Þ

Equation (11) guarantees that charge is conserved.An electric
field calculated with a nonconserved charge is not a solution
of Maxwell’s equations, since their definition implies the
conservation of charge. Not taking into account the first and
third terms in the rhs of Eq. (11) results in an unphysical
radiation field, for instance (as shown in Sec. II C). Note that
we have chosen a −q charge in order to balance out the total
charge contained in the space, butwe could have used a single
þq charge for our problem, by substituting the first term in
Eq. (11) by þqδ3ðx0 − x1ÞΘðt1 − t0Þ, and the resulting
electric field would only differ in a static Coulomb term.
The integrals containing a δ3ðx0 − x1Þ or δ3ðx0 − x2Þ are

integrated trivially. However, the term δ3ðx0−x1−vðt0−t1ÞÞ
must be written as

δ3ðgðx0ÞÞ ¼ δ3
�
x0 − x1 − v

�
t −

jx − x0j
cn

− t1

��

¼
X
i

δ3ðx0 − xp;iðx; tÞÞ
j ∂g∂x0 jxp;i

¼
X
i

δ3ðx0 − xp;iðx; tÞÞ
j1 − v · R̂ðxp;iðx; tÞÞ=cnj

¼
X
i

δ3ðx0 − xp;iðx; tÞÞ
κi

; ð13Þ

where xp;iðx; tÞ is the retarded position of the particle as a
function of ðx; tÞ. These deltas are going to ensure that x0 is
only evaluated at the retarded position, so upon integration
we must substitute x0 for the retarded particle position and
introduce the κ factors, where we have defined

κi ¼ j1 − v · R̂ðxp;iðx; tÞÞ=cnj ¼ j1 − v · R̂i=cnjret: ð14Þ
The index i runs through the several possible retarded
positions, that is, the roots of gðx0Þ ¼ 0. κ is, in fact, related
to the derivative of the observation time twith respect to the
retarded time t0,

dt
dt0

¼ 1 − v · R̂=cn: ð15Þ

Let θ be the angle formed by v and R̂, that is, the angle that
the particle-observer line makes with the track. Let us define
the Cherenkov angle θC as the angle that makes this
derivative 0.

1 − v · R̂=cn ¼ 1 − nβ cos θC ¼ 0; ð16Þ

that is,

θC ¼ acos
�

1

nβ

�
; ð17Þ

where β ¼ v=c. If, for our case, the track is always seenwith
an angle θ > θC, dt

dt0 > 0, so t is monotonically increasing
and there is only one t0 for a given t. The same is true if
θ < θC, although in this case the derivative is dt

dt0 < 0.
However, if for a point along the track θ ¼ θC is verified,
we can have two retarded times for a single observation time.
Knowing this, we can drop the sum over i and introduce the
retardation brackets, keeping in mind that we may have two
retarded positions below and above the Cherenkov angle
whose fields we have to add.
Using Eq. (13) in Eq. (10) with the sources specified in

Eqs. (11) and (12), the field can be written as

Eðx;tÞ¼ q
4πϵ

�
−
R̂1

R2
1

½Θðt0− t1Þ�ret−
R̂1

cnR1

∂
∂t ½Θðt

0− t1Þ�ret

þ
�
R̂
κR2

ðΠðt0;t1;t2ÞÞ
�
ret
þ 1

cn

∂
∂t
�
R̂
κR

ðΠðt0;t1;t2ÞÞ
�
ret

−
v
c2n

∂
∂t
�
1

κR
ðΠðt0;t1;t2ÞÞ

�
ret

þR̂2

R2
2

½Θðt0− t2Þ�retþ
R̂2

cnR2

∂
∂t ½Θðt

0− t2Þ�ret
�
; ð18Þ

having defined the boxcar function

Πðt0; t1; t2Þ ¼ Θðt0 − t1Þ − Θðt0 − t2Þ ð19Þ

and R1;2, R̂1;2 being the distances and unit vectors from the
first and last point of the track to the observer. In order to
simplify the expression, we can derive the terms
∂
∂t ½Θðt0 − tiÞ�ret. The step function is always 0 or 1, either
using retarded time or observation time, so its derivative
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with respect to observation time must be a unit Dirac delta, but at the observation time t corresponding to the retarded time
t0 ¼ ti,

∂
∂t ½Θðt

0 − tiÞ�ret ¼
� ∂
∂t0 Θðt

0 − tiÞ
�
ret

¼ ½δðt0 − tiÞ�ret; ð20Þ

which allows us to rewrite Eq. (18) as

Eðx; tÞ ¼ q
4πϵ

�
−
R̂1

R2
1

Θðt − t1 − R1=cnÞ −
R̂1

cnR1

δðt − t1 − R1=cnÞ þ
�
R̂
κR2

ðΠðt0; t1; t2ÞÞ
�
ret
þ 1

cn

∂
∂t

�
R̂
κR

ðΠðt0; t1; t2ÞÞ
�
ret

−
v
c2n

∂
∂t

�
1

κR
ðΠðt0; t1; t2ÞÞ

�
ret
þ R̂2

R2
2

Θðt − t2 − R2=cnÞ þ
R̂2

cnR2

δðt − t2 − R2=cnÞ
�
: ð21Þ

We have used the fact that t0 ¼ t − Ri=cn before t0 ¼ t1 and
after t0 ¼ t2. The first line in Eq. (21) contains a static
Coulomb field turned on at t1 and an impulse radiation
field. The third line shows a similar field, but corresponding
to the instant when the particle stops. The second line is
analogous to the Heaviside-Feynman expression of the
electric field of a particle existing for a limited time, used in
[32] for the calculation of the electric field. The impulse
fields with the form

R̂i

cnRi
δðt − ti − Ri=cnÞ ð22Þ

come directly from the imposition of charge conservation,
and they represent a radiation field that would be missing
had we not taken into account a realistic charge density.
This field is created by the changes in the charge density,
and so we can pair it with the second term in the second line
of Eq. (21), since they must always appear together. Let us
develop what happens at the time t1;obs ¼ t1 þ R1=cn with
these two terms,

Econsðx; tÞ ¼
q

4πϵcn

�
−
R̂1

R1

þ R̂1

R1j1 − v · R̂1=cnj

�

× δðt − t1 − R1=cnÞ: ð23Þ

The second term on the rhs in Eq. (23) cannot exist on
its own. It represents a sudden appearance of charge,
which is not possible without a creation of an opposite
charge at the same point, which in turns creates an
electric field given by the first term. Analogously for the
deceleration of our particle, we need to have a field of
the kind

Econsðx; tÞ ¼
q

4πϵcn

�
R̂2

R2

−
R̂2

R2j1 − v · R̂2=cnj

�

× δðt − t2 − R2=cnÞ; ð24Þ

where the first term on the rhs is reminding us that the
particle does not disappear but instead stops and stays at
the same place.

B. Far-field approximation. The ZHS formula

Equation (21) can be taken to the far-field limit after
which we arrive at the time-domain ZHS formula [35].
We show in Appendix A how to retrieve the ZHS
formula,

EZHSðx; tÞ ¼ −
eμr

4πϵ0c2R
v⊥

δðt − nR
c − ð1 − nβ cos θÞt1Þ − δðt − nR

c − ð1 − nβ cos θÞt2Þ
1 − nβ cos θ

: ð25Þ

C. Calculation of time-domain field and comparison
with far-field (ZHS) formula

Let us consider an electron track (q ¼ −e) along with a
positive charge (q ¼ e) that stays at rest. The time-domain
electric field of such a configuration can be calculated
numerically using Eq. (21). Even though one of the main
aims of this work is to develop an equation to calculate the

field created by an extensive air shower, Eq. (21) is valid for
dense dielectric media as well. Because of this, and also the
fact that superluminous effects (like the Cherenkov cone)
are more prominent in dense media, we choose a dielectric
medium with a refractive index of n ¼ 1.78, akin to that of
deep Antarctic ice, to perform our calculations and to better
illustrate our point. Let us embed a 1.2 m long electron
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track traveling along the z axis with a speed of v ∼ c in the
aforementioned medium and place an observer at 10 m
and at an angle of θC þ 10° ¼ 65.82°, with θC being the
Cherenkov angle (see Fig. 1). In order to evaluate Eq. (24),
we choose a numerical step Δt ¼ 0.05 ns and define our
numerical derivative at a point ti as a two-point derivative
as follows:

df
dt

ðt0Þ ≈
fðt0 þ ΔtÞ − fðt0 − ΔtÞ

2Δt
: ð26Þ

Besides evaluating it, we can compare our formula with the
ZHS algorithm, which has been proven [37] to give the
correct results for the far-field regime, that is, kR ≫ 1, with
k being the wave number and R the distance between
particle and observer. We show the results in Fig. 2. We find
that the ZHS algorithm (blue points) and Eq. (21) (red line)
give the same result, which is understandable knowing that
the field lasts for several nanoseconds, which means that for
the frequencies contributing the most to the radiation field,
kR ∼ 2π R

cnT
∼ 370, with T being the inverse of the fre-

quency ν, of the order of GHz. However, if we do not take
into account the terms in Eqs. (23) and (24) that guarantee
the conservation of charge, we are not able to reproduce the
impulses corresponding to the acceleration and decelera-
tion of the particle (black lines), meaning that such terms
cannot be omitted for a physical calculation of the electric
field. Putting an observer at 100 m from the track, where
the acceleration and deceleration fields are more important

than in the previous case, demonstrates that not including
this term results in an incorrect impulse field; see Fig. 3.
We show in Fig. 4 that our formula is also valid for

calculating the field inside the Cherenkov cone. The
predicted polarity is in agreement with the polarity from
the ZHS formula. Besides, outside (Fig. 2) and inside the
Cherenkov (Fig. 4) cone we find the same polarity. Let us
remember that the acceleration and deceleration fields are
interchanged when going from outside the cone to inside
the cone, meaning that inside the cone the observer sees the
field from the deceleration first. Figure 4 illustrates the
narrowing of the electric field as the observer moves closer
to the Cherenkov angle.

FIG. 1. Sketch containing the particle track and the observer. θ is
the angle formed by the particle velocity v and the line joining the
particle and the observer. The observer lies at r and the particle at r0.
R is the distance between observer and particle. The particle travels
along the z axis (indicated in the figure along with the x axis).

FIG. 2. Electric field as a function of time created by a 1.2 m
long electron track traveling along the z axis in deep Antarctic ice
(n ¼ 1.78). The observer is placed at θC þ 10° and at a distance
of R ¼ 100 m. Red lines represent Eq. (21), blue points represent
the ZHS algorithm, and black lines represent Eq. (21) but without
the terms needed for the conservation of charge. The numerical
time step is Δt ¼ 0.1 ns.

FIG. 3. Same as Fig. 2 but with an observer at R ¼ 100 m.
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Now that we have shown that our formula yields sensible
results in time domain, we proceed with the study of its
frequency-domain counterpart.

III. ELECTRIC FIELD OF A PARTICLE TRACK IN
FREQUENCY DOMAIN

We have two ways to know the emission of a particle
track in frequency domain. Either we transform Eq. (21)
(see Appendix B) or we solve Maxwell’s equations in
frequency domain (see Appendix C). Both approaches give
the following equation:

Eðx;ωÞ ¼ q
4πϵ

�
−
R̂1

R1

eiωt1eikR1

�
i

ωR1

þ 1

cn

�

þ
Z

t2

t1

dt0eiωt0eikR
�
R̂
R2

−
iω
cn

R̂
R
þ iω

c2n

v
R

�

þ R̂2

R2

eiωt2eikR2

�
i

ωR2

þ 1

cn

��
: ð27Þ

A. Calculation of frequency-domain field and
comparison with far-field (ZHS) formula

Another frequency-domain equation for the same problem
of a track traveling along the z axis can be found in [37]. The
radial (ρ) and vertical (z) components of the electric field can
be written in this work’s notation as follows:

Eρðx;ωÞ ¼ i
qv
ω

1

4πϵ

Z
t2

t1

dt0eiωt0
eikR

R

× sin θ cos θ

�
b

�
b −

1

R

�
þ 1

R2

�
; ð28Þ

and

Ezðx;ωÞ ¼ i
qv
ω

1

4πϵ

Z
t2

t1

dt0eiωt0
eikR

R

×

�
b2cos2θ þ cos2θ

R2
−
b
R
ðcos2θ − 1Þ

�

þ iω
μ0
4π

qv
Z

t2

t1

dt0eiωt0
eikR

R
; ð29Þ

where bðt0Þ ¼ ik − 1
R. Equations (28) and (29) have been

derived following the same premises as Eq. (B9), but
circumventing the problem of charge conservation by
explicitly using the Lorenz gauge condition in frequency
domain. This way, it is possible to calculate the scalar
potential Φ by means of the vector potential A, that is,

Aðx;ωÞ ¼ iϵμ0ωΦðx;ωÞ; ð30Þ

allowing us to arrive at a correct field without having towrite
a correct charge density. In exchange, we arrive at a more
cumbersome electric field [Eqs. (28) and (29)] than in the
present work [Eq. (27)], although both expressions are
equivalent at nonzero frequency.
We show an example of this equivalence in Fig. 5, where

both approaches give the same numerical result for an
observer placed at the Cherenkov angle of a track. As a
consequence, Eq. (27) contains the exact field of a track,
including the Cherenkov shock wave [38]. In particular,
this means that in far-field regime, Eq. (27) agrees with the
ZHS algorithm for large frequencies (kR ≫ 1), which is
shown in Fig. 5.

FIG. 4. Same as Fig. 2 but only the x component of the field and
with an observer at θC − 10° (solid lines) and another one at
θC − 5° (dashed lines).

FIG. 5. Fourier transform of the electric field (x and z
components) as a function of frequency for a 1.2 m long track
traveling in deep Antarctic ice (n ¼ 1.78) along the z axis at a
speed v ≈ c. The observer is placed at the Cherenkov angle, at a
distance of R ¼ 10 m and R ¼ 100 m. The exact field from
Eqs. (28) and (29) (blue points) is plotted, along with the field
from Eq. (27) (black lines) and the field calculated with the ZHS
algorithm (red lines). The first two approaches are indistinguish-
able, and the third one agrees with them in the far-field regime.
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The advantage of the present work with respect to the
formalism in [37] is that in this work we have derived the
time-domain field, which was not present in [37]. The time-
domain field is vastly superior in terms of computing power
to its frequency-domain counterpart, sincewedonot have the
need to performnumerical integration.Besides, theobtention
of the time-domain picture is already desirable in itself for
reasons of physical insight. In this work we have also
presented a frequency-domain formula that is simpler than
the formula in [37], and we have proven that it can be
obtained directly in frequency domain and as a transform of
the time-domain version. The present work’s frequency-
domain formula is equivalent at nonzero frequency to the
formulas in [37], because they are obtained from the same
potentials, although expressed in a different fashion. In [37]
the Lorenz gauge condition is explicitly used to derive the
scalar potential from thevector potential, which instead leads
us to more complicated formulas that are harder to transform
to time domain and that do not contain the correct description
of the field at zero frequency (there are some delta functions
missing), which is necessary for this transform.

IV. IMPLEMENTATION OF THE TIME-DOMAIN
FORMULA IN THE SELFAS

MONTE CARLO CODE

Once it has been shown that Eq. (21) is an adequate
formula for the description of the electric field created by a
particle track, we can embed this formula in an air shower
simulation code in order to calculate the electric field
generated by an extensive air shower. We have chosen the
SELFAS [32] MC code. SELFAS uses a hybrid approach
for the simulation—a given number of particles and their
properties are sampled from probability distributions
(longitudinal and lateral positions, velocity, etc.) and then
each particle is subject to interactions and microscopically
followed for an atmospheric depth of 15 g=cm2. The
combination of macroscopic particle distributions and
microscopic treatment of each individual particle consti-
tutes what we call the hybrid approach. Currently, SELFAS
samples the particles using the longitudinal shower profile
given by CONEX [39], a lightweight code that produces
results compatible with the full MC CORSIKA. SELFAS
has been recently upgraded with a state-of-the-art treatment
of the atmosphere with its inclusion of the Global Data
Assimilation System [40,41].
Before we implement Eq. (21) in the code, special

attention has to be paid to the Coulomb terms of the static
particles left behind, since they are not detectable in an EAS,
first, because the physical situation is not the same. If a
random track inside the shower is picked, there is a high
probability that this track is the continuation of an ongoing
particle trajectory and not the beginning, meaning there is no
opposite charge left behind and its static field can be ignored.
Analogously, a randomly chosen track will likely not be the
end of the true particle trajectory, so we do not suppose that

the particle rests at the end of the track and ignore its
Coulomb field. Secondly, if there are static charged particles
left behind, the medium itself changes in order to regain
electrostatic equilibrium and minimize the static electric
fields. Because of these physical reasons, we do not compute

the Coulomb terms R̂1;2

R2
1;2
Θðt − t1;2 − R1;2=cnÞ.

One way of justifying this approximation is to calculate
an estimation for this electrostatic emission with a simple
model. Let us assume a vertical 1018 eV shower with a
number of charged particles Nparticles ∼ 109. For each
charged particle, there is a particle of the opposite sign
in the shower or in the surrounding atmosphere,1 but we
assume that all the electrostatic emission comes from the
excess charge of the shower (∼20% of the total number of
particles) and that all the particles are located at the shower
maximum, at a height of h ∼ 4 km. We also assume that the
electrostatic field is turned on at a time t0, making the
contribution of the whole shower coherent at all frequen-
cies, and we treat it as constant, effectively ignoring ion
recombination. The radial component of the electrostratic
field can be written as

Estatic ∼
eΔqNparticles

4πϵ0h2
Θðt − t0Þ: ð31Þ

Δq ∼ 0.2 is the magnitude of the excess charge. This
translates into the frequency domain at nonzero frequency
as

EstaticðωÞ ∼
eΔqNparticles

4πϵ0h2
i
ω
; ð32Þ

which decreases with frequency. We can thus obtain an
estimation for the field from the Coulomb terms taking as a
reference the field at 1 MHz,

EstaticðνÞ ∼ 2.9
1 MHz

ν
nVm−1 MHz−1; ð33Þ

which is negligible for our calculations. The actual field
should be lower, due to the recombination of the ions.
Another important matter is what to do with the particles

that reach the ground, since our calculation is valid for a
single medium. When a track reaches ground, its field can
be calculated as the sum of the field of a track that stops just
above the ground and another one accelerating at the same
time just below the ground, and making their distance as
small as possible. This approach explains transition radi-
ation [42,43]. With this scheme in mind, we can separate
the total field into three different contributions:

1Actually, if the atmosphere is neutral, there is always a small
excess of positive charge given by the atomic number of the
primary cosmic ray.
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(i) The direct field coming from the track above the
surface (as if there were no boundary). This con-
tribution can be calculated, at all frequencies,
with Eq. (21).

(ii) The field created by the response of the interface (in
this case, the ground) to the field emitted by the track
above the surface. If the track lies in the far field with
respect to the ground, and also the antenna lies in
the far field with respect to the ground, that is, if the
distances to the ground are much larger than the
observation wavelength, we can use geometrical
optics and the standard Fresnel coefficients. If the
antenna is close to the ground but the track is in
the far field with respect to the ground, a possible
workaround is to use the reciprocity theorem
[44,45], which allows us to know the antenna
voltage with the far-field antenna pattern and the
direct field of the track.
In our case, since we are interested in frequencies

around the MHz (λ ∼ 300 m), and there is a non-
negligible number of particles arriving at ground, we
cannot use geometrical optics. Moreover, the anten-
nas are placed close to the ground in most radio EAS
experiments (9 m high in the case of EXTASIS
[11]). When the emitter and receiver are in the near
field of the ground, what we have is a wave that is a
mixture of a surface wave and a reflected (in the
sense of geometrical optics) wave [46], which can be
more similar to the former or the latter depending on
the actual physical configuration. The calculation of
such a field lies outside of the scope of the present
paper, so as a first-order approximation we do not
calculate this contribution. Nevertheless, the impor-
tance of this contribution constitutes an interesting
study that we are currently carrying out.

(iii) The contribution of the underground track is
ignored. Because of the larger attenuation losses
of radio waves inside soil [47], we expect this
contribution to be much smaller than the surface
wave contribution.

To sum up with, we calculate the direct contribution from
the parts of the track above the ground. This is equivalent to
suddenly stopping the particles upon their arrival to the
ground, which seems reasonable, since these electrons are
in fact beta radiation with a mean speed of ∼0.3c and they
are stopped in < 1 cm of soil.

V. SIMULATIONS FOR EAS AND COMPARISON
WITH THE FAR-FIELD EMISSION

We have simulated a proton-induced 1 EeV shower, with
a zenith angle of 30° and coming from the east (ϕ ¼ 0°
marks the east and ϕ ¼ 90° the north), using 2 × 108

particles. The ground lies at an altitude of 1400 m, as is
the case for the Pierre Auger Observatory. Several antennas
have been placed north of the shower core, at different

distances from it. Since Eq. (21) is equivalent to the ZHS
formula in the far field, we focus on the low-frequency part
of the electric field and filter our resulting electric fields
with a low-pass (or band-pass, depending on the case)
sixth-order Butterworth filter.2 We show in Fig. 6 the
resulting vertical component of the electric field (filtered

FIG. 6. Electric field as a function of time created by a 1 EeV
proton-induced shower with 30° of zenithal angle and coming
from the east (ϕ ¼ 0°). Times have been arbitrarily offset. Traces
have been numerically transformed to frequency, then filtered
with a sixth-order low-pass Butterworth filter and transformed
back to time domain. This work’s formula (red lines) and the far-
field approximation (ZHS, black lines) are plotted. Observers
have been placed at 200 (solid lines) and 500 m (dashed lines)
east from the shower core. The sudden death field (indicated by
the arrows) is visible after the principal pulse in each trace below
5 MHz. Top: 5 MHz low-pass filter. Bottom: 10–80 MHz band-
pass filter. See text for details.

2A Butterworth filter has the important property of preserving
causality. An unphased step or box filter gives an acausal
behavior. In particular, for a typical EAS signal, it produces
an unphysical ringing with a nonzero field well before the actual
arrival time of the wave at the observing location.
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at frequencies < 5 MHz) for one observer at 200 m east of
the shower core and another at 500 m. The electric fields
have been calculated with the far field (ZHS) and complete
approach [Eq. (21)] using the very same shower. It is worth
noting that at low frequency (Fig. 6, top, and Fig. 7) and at a
distance of 200 m, differences between the far field and the
complete approach are quite important, whereas for 500 m
both approaches are visually indistinguishable. This is also
the case when filtering between [20–80] MHz for the
observer at 200 m (Fig. 6, bottom). Another important
feature found is the existence of a pulse originated by the
sudden deceleration of the shower front, marked by the
arrows in Fig. 6. Note that this deceleration is coherent only
at low frequencies, since the pulse disappears filtering in
the [20–80] MHz band. From now on, we call this pulse the
SDP [26].
In Fig. 7 we show the geomagnetic component (EW),

finding that at low frequencies, the main geomagnetic pulse
from the EAS is changed in a non-negligible way at 200 m
from the shower core. This is a remarkable fact, because the
altitude of the shower maximum being at several kilo-
meters, one could think that the far-field approach could
suffice for computing near the shower axis at ∼MHz
frequencies, but this is not the case.
We show in Fig. 8 some examples of the spectrum

amplitude of the electric field for the far-field and complete
approaches. For an observer at 500 m, differences between
the two approaches are negligible, whereas at 200 m and
below 10 MHz differences are quite important. In order to
quantify them, we show the relative difference between the
two approaches for the same shower in Fig. 9, defined as
the absolute value of the difference between the far field
and the exact formula divided by the amplitude of the exact
formula (for a given polarization). Below 10 MHz, and for
this given shower, both approaches differ considerably and
one should use the exact formula if a complete electric field

is needed. The relative difference falls with frequency until
∼10 MHz, where it begins to be dominated by the
incoherent emission of the particles of the lower part of
the shower that are closer to the observer (located in the
near field). The error lies around ∼1% above 10 MHz,
except for the vertical component at 50 m from the shower
core, where the discrepancy between the two formulas is
still large, up to ∼50 MHz.
So as to elucidate whether we should use the exact

formula instead of the far-field approximations for most of

FIG. 7. Same as Fig. 6, top, but for the east-west (EW)
polarization. See text for details.

FIG. 8. Amplitude of the Fourier transform of the electric field
as a function of frequency created by a 1 EeV proton-induced
shower with 30° of zenithal angle and coming from the east
(ϕ ¼ 0°). Dashed lines indicate the result of the complete
formula, while solid lines portray the far-field calculation. We
have plotted the east-west and vertical polarizations for an
observer at 200 m and another at 500 m north of the shower core.

FIG. 9. Relative difference as a function of frequency between
the exact solution and the far-field approximation (ZHS) for the
same shower of Fig. 8. We have placed observers at 50 (black),
200 (blue), and 500 m (red). Solid lines indicate EW polarization
and dashed lines vertical polarization.
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today’s radio experiments, which measure the electric
field above 20 MHz, we have computed the relative
difference as a function of the distance for a fixed
frequency of 20 MHz varying the zenithal angle of the
shower. We have simulated, for each zenithal angle, ten
different showers and calculated the relative difference
between the far-field and exact calculations. We have
plotted the mean and standard deviation of these
differences in Fig. 10, where we can conclude that at
distances larger than ∼100 m, the error for the inspected
showers is less than 1% for the EW and north-south (NS)
components. However, the error in the vertical component
for a vertical shower (less than 20°) is quite large. For the
depicted 0° shower (Fig. 10, top left), even at 250 m from
the shower core, the mean error lies around ∼30%. For
the inspected 0, 20, 40 degree showers, the error in the
horizontal polarizations at distances larger than 100 m is
of the order of 1% or less, but it does not decrease rapidly

with the distance because of the shower particles that lie
closer to the ground. Because of this, the error committed
when calculating the field from a 60° shower (Fig. 10,
bottom right), which presents a smaller number of particles
near the observer, is less than the error committed for
vertical showers. We have checked that for showers having
a zenith angle smaller than 40° the error as a function of
distance for 50 MHz is similar to the error at 20 MHz. The
above facts hint that for most current experiments meas-
uring in the [20–80] MHz band and only horizontal polar-
izations, the far-field approximation rests valid at distances
larger than 100 m from the shower core. If, however, an
antenna lies at a smaller distance, or if the vertical
component is being measured, one should consider using
the exact formula presented in this work. For low-frequency
experiments, the use of Eq. (21) is imperative, but remem-
bering that Eq. (21) ignores the effect of the boundary,
which is likely to give further corrections.

FIG. 10. Relative difference as a function of distance between the exact solution and the far-field approximation (ZHS) for the same
shower of Fig. 8. The relative differences have been calculated for 1 EeV showers at frequency of 20 MHz and averaged over ten
showers. The means of these differences are represented by the marks, while the error bars indicate the standard deviation. EW, NS, and
vertical polarizations are plotted as indicated in the legend. Top left: 0° zenith angle shower. Top right: 20° zenith angle shower. Bottom
left: 40° zenith angle shower. Bottom right: 60° zenith angle shower.
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VI. PROPERTIES OF THE SUDDEN DEATH PULSE

A. Simple model for the sudden death pulse

We have obtained the SDP in our simulations as a pulse
created by the sudden deceleration of the shower front upon
its arrival at the ground. Because of the large extension of
the shower front and its thickness that causes the particles
to arrive at different times, the pulse is only coherent at low
frequencies (Fig. 6). However, the Nishimura-Kamata-
Greisen formula predicts that even for relative old showers
with an age of s ¼ 1.5, around half of the particles are
contained inside a distance to the shower axis less than the
Molière radius, ∼100 m. For a young shower with s ¼ 1.2,
we have more particles inside. The Molière radius is
comparable to the wavelengths between 1 and 5 MHz,
that is, from 300 to 60 m, which inspires us to postulate a
simple model for the SDP, wherein all the particles travel
parallel to the shower axis very close to each other and
arrive at the shower core. The model implies that the bulk of
the radiation is produced when the part of the shower with
most particles suddenly decelerates, creating a maximum
for the pulse of the form

ESDP;maxðx; tÞ ¼ −jej NΔq
4πϵR

v⊥δ
�
t −

nR
c

�

¼ −jej NΔq
4πϵR

ð−R̂ × ðR̂ × vÞÞδ
�
t −

nR
c

�
;

ð34Þ
where we have applied the far-field approximation, and
also that the core is located at the origin and the shower
maximum arrives at the ground at t ¼ 0. N is the number of
particles arriving at the ground, Δq is the ratio of (negative)
excess charge particles to the total number of particles, and
v is the mean velocity of the shower particles along the
shower axis. v⊥ ¼ −R̂ × ðR̂ × vÞ corresponds to its pro-
jection perpendicular to the line of sight that joins the
shower core and the observer. Equation (34) gives already
some insight on the expected maximum of the SDP. It
implies the following:

(i) the arrival time of the maximum of the pulse is linear
with the distance to the shower core, and the
proportionality is precisely the inverse of the speed
of light in the medium;

(ii) in the far field, we expect a maximum amplitudewith
a dependence of 1=R, akin to a radiation field, and

(iii) the polarization of this pulse should lie along the
direction of the shower axis projected onto the
direction perpendicular to the line of sight core
observer, as a first approximation.

B. Arrival time as a function of the distance
to the shower core

We have simulated a 1 EeV proton-induced shower of
30° of zenithal angle coming from the east and put several

observers north of the shower core. After filtering the
traces with a 10 MHz sixth-order Butterworth filter, we
show the SDP electric field as a function of time for
different distances to the shower core in Fig. 11, where it
is apparent that the maxima present a displacement
proportional to the distance. Moreover, the amplitude
seems to decrease with the inverse of the distance. The
traces in Fig. 11 present an asymmetry (the signal before
the maximum is asymmetric with respect to the signal
after the maximum) even at 700 m from the shower core,
and since the SDP is created by the instantaneous decel-
eration of the shower particles at ground level, the asym-
metry in the pulse reflects the asymmetry in the deceleration
of ground particles and, therefore, of the shower disk
projection on the ground.
The time arrival dependence is verified in Fig. 12, where

we plot the arrival times (with arbitrary offsets for clarity) as a
function of distance for showers similar to that in Fig. 11, but
varying the energy. Each data set has a linear fit super-
imposed, whose slopes vary from 3.332 to 3.347 nsm−1,
while the expected slope is 1=cn ¼ n=c ≈ 3.336 nsm−1.
The simulated arrival time is, in fact, in good agreement with
the simple model prediction.

C. Amplitude as a function of the distance
to the shower core

The 1=R dependence has been tested in a similar way,
but in this case we have taken the mean of the SDP
maximum amplitude for ten different simulated showers
with the same geometry and energy as in Fig. 12. For each
set of amplitudes Ai we have calculated its mean hAi and

FIG. 11. SDP electric field (vertical component) as a function
of time created by a 1 EeV proton-induced shower with 30° of
zenithal angle and coming from the east (ϕ ¼ 0°). Observers have
been placed north of the shower core, at regular intervals of
100 m. The dependence of the arrival time of the maxima with the
distance, as well as the amplitude, is apparent. Traces have been
filtered with a 10 MHz sixth-order Butterworth low-pass filter.
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performed a fit of the form log10hAi ¼ aþ b log10 R,
using as the uncertainty of log10hAi an estimation of the
uncertainty of the mean of the logarithm of the amplitude,
that is,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðn − 1Þ ½hðlog10 AÞ
2i − hlog10 Ai2�

s
: ð35Þ

We have plotted the results in Fig. 13. The slope of the fit
varies from −1.04 to 1.00, being compatible with −1 (pure
radiation field) at 1σ below 1 EeV and 2σ above. In any
case, the data are very close to what one would expect from
a pure radiation field, agreeing with our simple model.

D. Amplitude as a function of the primary energy

Another feature of the SDP that can be drawn from
Eq. (34) is that we expect an amplitude proportional to the
number of particles that reach the ground. This implies that,
statistically, the higher the energy, the larger the amplitude
of the SDP, although we do not expect a linear dependence,
since the number of particles that arrive at the ground is not
linear with the energy due to the variation of the shower
maximum depth with the primary energy. We can, none-
theless, plot the expected SDP amplitude as a function of
the primary energy for several distances to the shower core,
as in Fig. 14, and fit the logarithm of the SDP amplitude.
The values for the slope are not compatible with 1, as
expected, but the χ2=ndof of the fits are, from smaller to
larger distance, 0.75, 1.07, 1.57, and 0.53, while the
90% C.L. for a χ2 with 4 degrees of freedom is
χ2=ndof0.9 ¼ 1.99475, meaning that the amplitude can
be related to a power of the primary energy for these

FIG. 12. Arrival time of the SDP maximum (vertical compo-
nent) as a function of distance to the shower core for proton-
induced showers of different energies (indicated on the legend)
with 30° of zenithal angle and coming from the east (ϕ ¼ 0°).
Observers have been placed north of the shower core. The
superimposed lines correspond to a linear fit to the data, with
a slope close to the inverse of the speed of light. Times have been
offset for visual clarity. See text for details.

FIG. 13. Mean amplitude of the SDP maximum (vertical
polarization) as a function of distance to the shower core,
averaged over ten proton-induced showers of different energies
(indicated on the legend) with 30° of zenithal angle and coming
from the east (ϕ ¼ 0°). Observers have been placed north of the
shower core. The superimposed lines correspond to a linear fit to
the logarithm of the amplitude versus the logarithm of the
distance, with the uncertainties given by Eq. (35) and represented
by the small vertical lines at the center of each marker. The data
are compatible with a 1=R dependence. See text for details.

FIG. 14. Mean amplitude of the SDP maximum (vertical
polarization) as a function of the primary energy, averaged over
ten proton-induced showers with 30° of zenithal angle and
coming from the east (ϕ ¼ 0°). Observers have been placed
north of the shower core (see legend). The superimposed lines
correspond to a linear fit to the logarithm of the amplitude versus
the logarithm of the primary energy, with the uncertainty of the
mean represented by the small vertical lines at the center of each
marker. The simulated data are compatible with a power law of
the type ASDP ¼ aEb

primary. See text for details.
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particular cases. 200 m away from the shower core, we find
∝ E1.13�0.02 and 800m away we find∝ E0.89�0.02. However,
according to our model, both should present the same
exponent, but this discrepancy is understandable because
our model does not take into account the three-dimensional
shape of the shower, which is crucial for a fine calculation of
the electric field. In particular, the shape of the distribution of
ground particles changes in a nonlinear way with the energy
of the primary particle, and this distribution of ground
particles is the one that determines the characteristics of the
SDP as a function of the observer position.

E. Spectrum

In Fig. 15 (top) we find an example of the spectrum for
the principal pulse and the SDP created by a 1 EeVand 30°

proton-induced shower. The principal pulse presents the
well-understood shape of growing electric field up to a
certain frequency upon which the emission ceases to be
coherent, falls off, and then stabilizes at high frequencies as
an incoherent spectrum. The SDP, on the contrary, is much
larger at low frequencies and becomes incoherent at
∼10 MHz, indicating that the SDP should be observable
only at frequencies below 10 MHz. Increasing the energy
increases the principal pulse, but also the SDP, each one in a
different way. In fact, for a 100 EeV shower (Fig. 15,
bottom), the SDP at low frequencies (<2 MHz) is larger
than the principal pulse.

F. Amplitude vs number of ground particles

According to Eq. (34), we expect the maximum ampli-
tude of the SDP to be proportional to the excess of
negatively charged particles arriving at the ground. If we
choose the vector R̂ to be perpendicular to v, the total
maximum amplitude of the pulse in our simple model is
equal to

jESDP;maxðx; tÞj ¼
eNΔq
4πϵR

δ

�
t −

nR
c

�
∝ N; ð36Þ

which is effectively proportional to the number of ground
particles. Let us place an observer 200 m north of the
shower core and let us simulate the electric fields from
showers coming from the east at zenith angles from 0 to 80°
and primary energies ranging from 0.1 to 100 EeV. We
show the results in Fig. 16 for a ground at 180 m of altitude,
similar to that which the EXTASIS experiment rests on. We
show in Fig. 16, top left, the number of electrons and
positrons arriving at the ground as a function of the primary
energy and shower zenith angle, while at the top right part
of the figure we find the same plot for the maximum total
amplitude of the SDP. Both figures are similar, indicating a
correlation between number of particles and pulse ampli-
tude. We show in Fig. 16, bottom left, the same plot for the
vertical polarization and at the bottom right the EW
polarization.
Let us increase the altitude to 1400 m. An increase in the

number of particles and the SDP amplitude is expected,
which is precisely what we find in Fig. 17. Supposing a
detection threshold of 5 μV=m, detectable showers at
180 m of altitude should have an energy larger than
1 EeV (see the region at the right of the 5μ V=m contour
line, Fig. 16, top right). For the EXTASIS site and the
projected livetime of ∼2; 3 years we do not expect showers
having more energy than 10 EeV, so we aim to detect the
SDP coming from showers with energies >1 EeV and
having a zenith angle <30°. The more vertical the shower,
the easier it should be to detect. For a site at 1400 m of
altitude (Fig. 17, right), the range of detectability is larger,
and it is even larger for a 2650 m altitude, similar to the one
at the GRAND site [48].

FIG. 15. Top: Amplitude of the vertical component of the
Fourier transform of the principal pulse (dashed lines) and the
SDP (solid lines) as a function of frequency created by a 1 EeV
proton-induced shower with 30° of zenithal angle and coming
from the east (ϕ ¼ 0°). We have placed observers 200, 400, and
600 m north of the shower core, located on the ground at 1400 m
of altitude. Each pulse presents a different frequency dependence.
Bottom: Same as top, but for 100 EeV of primary energy.
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VII. SUMMARY AND CONCLUSIONS

We have presented a time-domain equation of the electric
field produced by a particle track, defined as a charged
particle that accelerates instantaneously, moves at a constant

speed, and instantaneously decelerates. Special emphasis has
been put on the conservation of the total charge so as to
ensure that the equation is a valid solution of Maxwell’s
equations and therefore gives the correct physical field.
Explicitly conserving the charge results in the appearance of

FIG. 16. Top left: Two-dimensional color plot of the number of electrons and positrons arriving at the ground (180 m of altitude) as a
function of the primary proton energy and shower zenith angle. Each bin contains the mean number of particles averaged over 100
showers. Top right: Two-dimensional color plot of the total SDP maximum amplitude (three polarizations) as a function of the primary
proton energy and shower zenith angle. Each bin contains the mean amplitude averaged over five showers. Bottom left: Same as top
right, for the vertical polarization. Bottom right: Same as top right, for the EW polarization.

FIG. 17. Same as Fig. 16, top, but with a ground altitude equal to 1400 m.
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two impulse fields coming from the first and last points of the
trajectory of the particle track and that needs to be added to
the total field. We have checked that our complete equation
reduces in the far-field limit (kR ≫ 1) to the ZHS formula,
which has been proven to be a correct expression for the far-
field emission of a particle track.
We have also solved the exact electric field for a track in

frequency (Fourier) domain, starting from the same physi-
cal problem (same set of charge densities and current
densities) but solving Maxwell’s equations in frequency
domain. We have shown that the result is analytically
equivalent to the Fourier transform of the time-domain
electric field. This is a check of the correctness of the
formula as well as a confirmation that working with the
time-domain formula and then transforming to frequency
domain is mathematically sound, since both equations are
Fourier transforms of each other. Limitations in validity and
precision come from the numerical step chosen for the
evaluation of the time-domain field and from the discrete
Fourier transform employed. Moreover, the frequency-
domain version of the electric field for a track is numeri-
cally equivalent to another frequency-domain formula [37]
obtained with the same hypotheses but with a different way
of calculating the scalar potential, in what constitutes
another check for our expression.
We have implemented the formula in the SELFAS

Monte Carlo code so as to know the emission it predicts
for EAS. In doing so, we neglected the static fields created
after the particle flight since this physical situation is not
going to be given in a real EAS, for the atmosphere will
tend to regain electrostatic equilibrium as soon as possible.
After the implementation, the results of our simulations
show that for a frequency larger than 20 MHz and
horizontal polarizations (the case for experiments like
AERA, CODALEMA, LOFAR or Tunka-Rex), the far-
field approximation can be used with an error of the order
of ∼1% or lower at distances greater than 100 m from the
shower core. However, for smaller distances to the shower
core one may consider using the exact formula for a particle
track. In the case of measuring at a frequency lower than
20 MHz or measuring the vertical component of an EAS, as
is the case for the EXTASIS experiment, the use of the
exact formula [Eq. (21)] is unavoidable if one is to know
the accurate electric field. For experiments conducted in
dense media, such as ARA, we expect the far-field
approximation to be valid almost always due to the much
smaller size of the shower, as shown in [37].
We have shown a low-frequency impulse field created by

the coherent deceleration of the shower front upon its arrival
to the ground, which we have called the SDP. This pulse
vanishes for frequencies above 20 MHz, which means
that such a field could be detectable with dedicated low-
frequency experiments like EXTASIS. In a first-order
approximation, we have calculated only the direct emission
of the decelerating shower front, ignoring the induced
surface wave.

We have studied the properties of the direct emission of the
SDP. The arrival time of the shower maximum is linear with
the distance from the observer to the shower core, and the
proportionality constant is compatible with the inverse of
the speed of light. The amplitude of the SDP decays with the
inverse of the distance to the shower core as well, which
means that the SDP behaves similarly to a radiation field.
These results can be explained using a simple model con-
sisting in a long track containing all the excess of charged
particles from the shower that arrive at the ground and
calculating the field created in the instant the track suddenly
decelerates.
The amplitude of the SDP has been found to be a

monotonously increasing function of the primary energy,
and, in particular, it is proportional to the number of
particles arriving at the ground. The vertical polarization
is favored for vertical showers while the horizontal polar-
izations are more present the more inclined the shower is, as
suggested by the simple model proposed here.
One important caveat to keep in mind is that while the

exact field of a particle track is needed if we want to
calculate the near-field emission of an EAS, one has to
know the response of the measuring antenna to an incoming
near-field emission to elucidate the final antenna voltage.
In this work we have been concerned with obtaining a
physical electric field, but the link to the antenna voltage,
which is what is measured eventually, lies outside the scope
of this paper.
Finally, while the SDP explains some of the properties of

the pulses measured by the low-frequency experiments in
the past, the SDP amplitudes obtained in the present work
are not large enough to explain all the experimental data. A
study on the influence of the surface wave may help us to
solve this discrepancy. This work is underway.
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APPENDIX A: OBTENTION OF THE ZHS
FORMULA

Let us begin by dropping all the terms with a 1=R2

dependence in Eq. (21),

Eðx; tÞ ¼ q
4πϵ

�
−

R̂1

cnR1

δðt − t1 − R1=cnÞ

þ R̂2

cnR2

δðt − t2 − R2=cnÞ

þ 1

cnR
∂
∂t

�
R̂
κ
ðΠðt0; t1; t2ÞÞ

�
ret

−
v

c2nR
∂
∂t

�
1

κ
ðΠðt0; t1; t2ÞÞ

�
ret

�
: ðA1Þ
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Let us suppose now that the unit vector R̂ and κ ¼ j1 − nβ cos θj do not change during the track flight, which is equivalent to
having the observation angle θ limited to a narrow range or having the track far away from the observers. Let us take
R ≈ R0, with R0 being one of the points in the track, for instance, the center point. Partial time derivatives are then 0 except
when the particle accelerates and decelerates,

Eðx; tÞ ¼ q
4πϵ

�
−

R̂0

cnR0

δðt − t1 − R1=cnÞ þ
R̂0

cnR0

δðt − t2 − R2=cnÞ

� 1

cn

R̂0

κR0

δðt − t1 − R1=cnÞ ∓ v
c2nκR0

δðt − t1 − R1=cnÞ

∓ 1

cn

R̂0

κR0

δðt − t2 − R2=cnÞ �
v

c2nκR0

δðt − t2 − R2=cnÞ
�
; ðA2Þ

where from the � and ∓ symbols, we take the upper one if θ > θC and the lower one if otherwise. Since we are in the far
field, we can use the Fraunhofer approximation for the distance: choosing a point x0 inside the track, and supposing the
particle is at x0 when t0 ¼ t0 ¼ 0,

Ri ¼ jx − x0 þ vt0j ≈ R0 − v · R̂0ti ¼ R0 − cos θvti: ðA3Þ
Plugging Eq. (A3) into Eq. (A2) and renaming R0 → R,

Eðx; tÞ ¼ q
4πϵ

�
−

R̂
cnR

δ

�
t −

nR
c

− ð1 − nβ cos θÞt1
�
þ R̂
cnR

δ

�
t −

nR
c

− ð1 − nβ cos θÞt2
�

� 1

cn

R̂
κR

δ

�
t −

nR
c

− ð1 − nβ cos θÞt1
�

∓ v
c2nκR

δ

�
t −

nR
c

− ð1 − nβ cos θÞt1
�

∓ 1

cn

R̂
κR

δ

�
t −

nR
c

− ð1 − nβ cos θÞt2
�
� v
c2nκR

δ

��
t −

nR
c

− ð1 − nβ cos θÞt2
���

: ðA4Þ

We now make use of the following identity:

R̂ −
R̂
κ
þ v
κcn

¼ � 1

κ

�
v
cn

− nβR̂ cos θ

�
¼ � 1

κcn
½vðR̂ · R̂Þ − R̂ðv · R̂Þ� ¼ � 1

κcn
½−R̂ × ðR̂ × vÞ� ¼ � v⊥

κcn
; ðA5Þ

where we take the plus sign if θ > θC and the minus sign if otherwise. v⊥ is, by definition, the projection of the particle
velocity perpendicular to the line joining the particle and the observer, also called the line of sight. With Eq. (A5), using a
positron charge defined as q ¼ e > 0 and using 1=ðϵc2nÞ ¼ μr=ðϵ0c2Þ, we arrive at the same equation as in [35],

EZHSðx; tÞ ¼ −
eμr

4πϵ0c2R
v⊥

δðt − nR
c − ð1 − nβ cos θÞt1Þ − δðt − nR

c − ð1 − nβ cos θÞt2Þ
1 − nβ cos θ

: ðA6Þ

Note that the� and the∓ have been substituted by the sign of the denominator that is positive outside the Cherenkov cone
and negative inside.

APPENDIX B: TRANSFORMATION OF EQ. (21) TO FREQUENCY DOMAIN

Equation (21) can be transformed to frequency domain. Defining the Fourier transform of a function fðtÞ as

FðωÞ ¼
Z þ∞

−∞
dteiωtfðtÞ; ðB1Þ

and knowing the Fourier transform for a step function,Z þ∞

−∞
dteiωtΘðt − t0Þ ¼ eiωt0

�
i
ω
þ πδðωÞ

�
; ðB2Þ

we find that
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−
q
4πϵ

Z þ∞

−∞
dt
R̂1

R2
1

Θðt − t1 − R1=cnÞ ¼ −
q
4πϵ

R̂1

R2
1

eiωt1eikR1

�
i
ω
þ πδðωÞ

�
; ðB3Þ

with k ¼ ω=cn and

−
q

4πϵcn

Z
dteiωt

R̂1

R2
1

δðt − t1 − R1=cnÞ ¼ −
q

4πϵcn
eiωt1eikR1

R̂1

R2
1

: ðB4Þ

The two terms for the deceleration can be written following the same steps. Taking the first term of the second line in
Eq. (21) and transforming it to frequency, supposing that θ > θC,

q
4πϵ

Z þ∞

−∞
dteiωt

�
R̂
κR2

ðΘðt0 − t1Þ − Θðt0 − t2ÞÞ
�
ret

¼ q
4πϵ

Z
t2þR2=cn

t1þR1=cn

dteiωt
�
R̂
κR2

�
ret

¼ q
4πϵ

Z
t2

t1

dt0eiωt0eikRðt0Þ
R̂
κR2

dt
dt0

¼ q
4πϵ

Z
t2

t1

dt0eiωt0eikRðt0Þ
R̂
R2

; ðB5Þ

where we have made the change of variable t → t0. Taking a geometry in which θ < θC instead yields

q
4πϵ

Z
t1þR1=cn

t2þR2=cn

dteiωt
�
R̂
κR2

�
ret

¼ q
4πϵ

Z
t1

t2

dt0eiωt0eikRðt0Þ
R̂
κR2

ð−κÞ ¼ q
4πϵ

Z
t2

t1

dt0eiωt0eikRðt0Þ
R̂
R2

; ðB6Þ

which is exactly the same result as Eq. (B5). In fact, if we suppose that for a point along the track, θ ¼ θC, and we also
suppose that the arrival time of the shockwave to the observer is tC;obs ¼ tC þ RC=cn, the transform is

q
4πϵ

�Z
t1þR1=cn

tC;obs

dteiωt
�
R̂
κR2

�
ret
þ
Z

t1þR1=cn

tC;obs

dteiωt
�
R̂
κR2

�
ret

�

¼ q
4πϵ

�Z
tC

t1

dt0eiωt0eikRðt0Þ
R̂
R2

þ
Z

t2

tC

dt0eiωt0eikRðt0Þ
R̂
R2

�
¼ q

4πϵ

Z
t2

t1

dt0eiωt0eikRðt0Þ
R̂
R2

; ðB7Þ

exactly the same as Eqs. (B5) and (B6). We can transform directly the rest of the terms of the second line in Eq. (21) using
the derivative property of the Fourier transform,Z

dteiωt
∂fðx; tÞ

∂t ¼ −iω
Z

dteiωtfðx; tÞ; ðB8Þ

since for our function, limt→�∞fðx; tÞ ¼ 0. Together with Eq. (B7) we write the following exact field for a track in
frequency:

Eðx;ωÞ ¼ q
4πϵ

�
−
R̂1

R1

eiωt1eikR1

�
i

ωR1

þ 1

cn

�
þ
Z

t2

t1

dt0eiωt0eikR
�
R̂
R2

−
iω
cn

R̂
R
þ iω

c2n

v
R

�
þ R̂2

R2

eiωt2eikR2

�
i

ωR2

þ 1

cn

��
: ðB9Þ

We have dropped the terms involving δðωÞ, since we are not interested in the contribution at zero frequency.

APPENDIX C: DERIVATION OF THE ELECTRIC FIELD FOR A PARTICLE
TRACK IN FREQUENCY DOMAIN

Equation (27) can be derived directly in frequency domain. Let us assume, without loss of generality, a particle at rest that
begins to move at a time t1 and at the vertical coordinate z ¼ z1 with a velocity v ¼ vẑ. The potentials in frequency domain
can be written as

Φðx;ωÞ ¼ 1

4πϵ

Z
d3x0

eikjx−x0j

jx − x0j ρðx
0;ωÞ; ðC1Þ

Aðx;ωÞ ¼ μ0
4π

Z
d3x0

eikjx−x0j

jx − x0j Jðx
0;ωÞ: ðC2Þ

It should be noted that the changes ϵ → ϵðωÞ and μ0 → μðωÞ are always possible, so we can always generalize our final
result for a frequency-dependent dielectric and magnetic medium. The charge density and the current density are steadily
written as
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ρðx0;ωÞ ¼ q
Z

∞

−∞
dt0eiωt0 ½δ3ðx0 − x1ÞΘðt0 − t1Þ þ δ3ðx0 − xpðt0ÞÞðΘðt0 − t1Þ − Θðt0 − t2ÞÞ þ δ3ðx0 − x2ÞΘðt0 − t2Þ�; ðC3Þ

Jðx0;ωÞ ¼ qvẑ
Z

∞

−∞
dt0eiωt0δ3ðx0 − xpðt0ÞÞðΘðt0 − t1Þ − Θðt0 − t2ÞÞ; ðC4Þ

with xpðt0Þ ¼ x1 þ vðt0 − t1Þ ¼ z1ẑþ vẑðt0 − t1Þ. Using Eq. (C3), we split Eq. (C1) into three terms,

Φðx;ωÞ ¼ q
4πϵ

�
−
Z

∞

t1

dt0
eikR1

R1

eiωt
0 þ

Z
∞

t2

dt0
eikR2

R2

eiωt
0 þ

Z
t2

t1

dt0
eikR

R
eiωt

0
�
; ðC5Þ

since R ¼ jxpðt0Þ − xj after integrating the three-dimensional Dirac deltas. Equivalently,

Φðx;ωÞ ¼ Φ1 þΦ2 þΦp: ðC6Þ
Equation (C2) can be written as

Aðx;ωÞ ¼ μ0
4π

Z
t2

t1

dt0
eikR

R
eiωt

0
v: ðC7Þ

Because of the cylindrical symmetry of our problem, we can calculate the radial component of the field using Φ alone.

Eρ ¼ −
∂
∂ρ ðΦÞ ¼ −

∂
∂ρ ðΦ1 þΦ2 þΦpÞ ðC8Þ

using that

∂
∂xi

�
eikjx−x0j

jx − x0j
�

¼ eikjx−x0j

jx − x0j
�
ik −

1

jx − x0j
�
x̂i · ðx − x0Þ
jx − x0j ; ðC9Þ

where xi ¼ x, y, z but it can also be ρ, the radial coordinate. Let us write

−
∂
∂ρΦp ¼ q

4πϵ

Z
t2

t1

dt0
eikR

R
eiωt

0
�
1

R
−
iω
cn

�
R̂ · ρ̂: ðC10Þ

Using the transform of the step function, we find the derivatives of Φ1 and Φ2.

−
∂
∂ρΦ1 ¼ −

q
4πϵ

Z
∞

t1

dt0
eikR1

R1

eiωt
0
�
1

R1

−
iω
cn

�
R̂1 · ρ̂ ¼ −

q
4πϵ

eikR1

R1

eiωt1
i
ω

�
1

R1

−
iω
cn

�
R̂1 · ρ̂; ðC11Þ

−
∂
∂ρΦ2 ¼

q
4πϵ

eikR2

R2

eiωt2
i
ω

�
1

R2

−
iω
cn

�
R̂2 · ρ̂: ðC12Þ

We have dropped the terms with δðωÞ, once again. Formally, the derivatives with respect to z are the same but making the
replacement ρ̂ → ẑ. This fact, along with the identity

R̂ · ρ̂þ R̂ · ẑ ¼ R̂ ðC13Þ
and also that μ0 ¼ 1=ðϵc2nÞ, helps us to write the total electric field. Recalling Eqs. (C7), (C10), (C11), and (C12),

Eðx;ωÞ ¼ −∇Φþ iωA ¼ q
4πϵ

�
−
R̂1

R1

eiωt1eikR1

�
i

ωR1

þ 1

cn

�
þ R̂2

R2

eiωt2eikR2

�
i

ωR2

þ 1

cn

�

þ
Z

t2

t1

dt0
eikR

R
eiωt

0
�
1

R
−
iω
cn

�
R̂þ

Z
t2

t1

dt0
eikR

R
eiωt

0 iω
c2n

v
R

�
; ðC14Þ

which is exactly the same as Eq. (B9). Since we can always find a frame where the track lies along the z axis, and Eq. (C14)
is the same as Eq. (B9), that means that Eq. (21) contains the exact field of a particle track at all frequencies.
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