N

N

Making components contract aware

Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeau, Damien Watkins

» To cite this version:

Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeau, Damien Watkins. Making components con-
tract aware. Computer, 1999, 32 (7), pp.38-45. 10.1109/2.774917 . hal-01794333

HAL Id: hal-01794333
https://imt-atlantique.hal.science/hal-01794333
Submitted on 30 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://imt-atlantique.hal.science/hal-01794333
https://hal.archives-ouvertes.fr

Making components contract aware

Antoine Beugnard ENsT Bretagne
Jean-Marc Jézéquel irisa’cNRs

Noél Plouzeau irisa/university of Rennes

Damien Watkins monash University

Before we can trust a component in mission-critical applications, we must
be able to determine, reliably and in advance, how it will behave.

Components have long promised to neatly
encapsulate data and programs into a box that
operates predictably without requiring that users
know the specifics of how it does so. Many
advocates have predicted that

components will bring about the bright future of
large-scale software reuse, spawning a market for
components usable with such mainstream software
buses as the Common Object Request Broker
Architecture (CORBA) and Distributed Component
Object Model (DCOM). In the Windows world, at
least, this prediction is becoming a reality.

Yet recent reports'? indicate mixed results when
using and reusing components in mission-critical set-
tings. Such results raise disturbing questions. How can
you trust a component? What if the component
behaves unexpectedly, either because it is faulty or sim-
ply because you misused it?

Mission-critical systems cannot be rebooted as eas-
ily as a desktop computer. We thus need a way of
determining beforehand whether we can use a given
component within a certain context. Ideally, this infor-
mation would take the form of a specification that tells
us what the component does without entering into the
details of how. Further, the specification should pro-
vide parameters against which the component can be
verified and validated, thus providing a kind of con-
tract between the component and its users.

In real life, contracts exist at different levels, from
Jean-Jacques Rousseau’s social contract to negotiable
contracts, from various forms of license agreements to
cash-and-carry. Likewise, we have identified four classes
of contracts in the software component world: basic or
syntactic, behavioral, synchronization, and quantitative.

Responsibility for contract management must be
shared by both client and service provider. In those
cases where the contracts are self-explanatory, assign-
ing responsibility is easy. But some contracts rely on
external constraints that too often remain implicit. In
particular, quantitative contracts such as quality of ser-

vice refer to features “outside the box,” which reside in
the system layer on which client and provider run.

In this article we define a general model of software
contracts and show how existing mechanisms could
be used to turn traditional components into contract-
aware ones.

FOUR LEVELS

When we apply contracts to components, we find that
such contracts can be divided into four levels of increas-
ingly negotiable properties, as Figure 1 shows. The first
level, basic, or syntactic, contracts, is required simply to
make the system work. The second level, behavioral con-
tracts, improves the level of confidence in a sequential
context. The third level, synchronization contracts,
improves confidence in distributed or concurrency con-
texts. The fourth level, quality-of-service contracts, quan-
tifies quality of service and is usually negotiable.

Basic contracts

Interface definition languages (IDLs), as well as
typed object-based or object-oriented languages, let
the component designer specify

 the operations a component can perform,

« the input and output parameters each component
requires, and

« the possible exceptions that might be raised dur-
ing operation.

Static type checking verifies at compile time that all
clients use the component interface properly, whereas
dynamic type checking delays this verification until
runtime.

Typically, a first-level contract would be imple-
mented in an object bus such as CORBA. The IDL
specification of the objects’ interface ensures that client
and server can communicate. Here, for example, is a
possible interface for a component implementing a
simple bank account management system:

Interface BankAccount {
void deposit(in Money amount) ;
void withdraw(in Money amount) ;
Money balance();
Money overdraftLimit();
void setOverdraftLimit(in Money
newLimit) ;

This definition states that you can make several
operations on a bank account: deposit, withdraw, and
set overdraft limit. Further, you can get specific infor-
mation from the account, including its balance and
overdraft limit. Both the Component Object Model
(COM) and JavaBeans let you write similar descrip-
tions, albeit with slightly different syntaxes.

Behavioral contracts

Unfortunately, because the BankAccount specifica-
tion does not define precisely the effect of operation
executions, the user can only guess at their outcomes.
A deposit would probably increase the balance, but
what if the deposit amount is negative? What would
happen to a withdrawal operation that exceeds the
overdraft limit?

Drawing from abstract-data-type theory, we can
specify an operation’s behavior by using Boolean
assertions, called pre- and postconditions, for each
service offered, as well as for class invariants. First
implemented under the name design by contract in the
Eiffel language,® this approach has spread to several
other programming languages (the Java extension
iContract,* for instance) and can be found in the
Unified Modeling Language as the Object Constraint
Language (OCL).5

The example shown in Figure 2 more precisely
defines our BankAccount interface’s behavior. The
assertions’ syntax is based loosely on OCL; the oper-
ator @pre refers to the value its argument had when
entering the method.

The design-by-contract® approach prompts devel-
opers to specify precisely every consistency condition
that could go wrong, and to assign explicitly the
responsibility of its enforcement to either the routine
caller (the client) or the routine implementation (the
contractor). A contract carries mutual obligations and
benefits: The client should only call a contractor rou-
tine in a state where the class invariant and the pre-
condition of the routine are respected. In return, the
contractor promises that when the routine returns, the
work specified in the postcondition will be done, and
the class invariant will be respected. Depending on the
strength of the postcondition, we can imagine nego-
tiable contracts at this level. A client may, for exam-
ple, require a prohibitively high-level guarantee that
requires an expensive server-side check, but other

Dynamically
negotiable

Level 4: Quality-of-service level

Level 3: Synchronization level
service object synchronization, path expression,
synchronization counters

Level 2: Behavioral level
pre- and postcondition,
Eiffel, Blue, Sather,
UML/OCL, iContract for Java

Level 1: Syntactic level
interface definition language,
usual programming languages

Nonnegotiable

Figure 1. The four contract levels, which start with basic syntactic nonnegotiable fea-
tures and progress to include highly dynamic, negotiable, quantitative properties.

Interface BankAccount {
void deposit(in Money amount) {
Require amount > 0;

Ensure balance() = balance()@pre + amount;

}
void withdraw(in Money amount) {
Require amount > 0 and

amount <= balance() + overdraftLimit() ;
Ensure balance() = balance()@pre - amount;

}
Money balance() ;
Money overdraftLimit();

void setOverdraftlLimit (in Money newLimit) {

Require balance() >= - newLimit

}

Invariant balance() >= - overdraftLimit()

Figure 2. Defining the interface behavior for a simple bank account management system.

clients—that may only need weak and cheap post-
conditions—could be implemented at a weaker level 2.

When using a third-party component, contracts
offer a specification against which you can validate
that component. Still, when working from the speci-

You can never be

sure that a third-

party component
will perform

correctly, only that

it will perform as
specified.

fication alone you must bear in mind that you
can never be sure the component will perform

correctly, only that it will perform as specified.

Synchronization contracts

The level 2 behavioral contract pretends that
services are atomic or executed as transactions,
which is not always practical or true. The level 3
synchronization contract specifies the global
behavior of objects in terms of synchronizations
between method calls. The aim of such a contract
is to describe the dependencies between services
provided by a component, such as sequence, par-
allelism, or shuffle. This kind of contract can be observed
in entity structures or more formal applications.”

The contract reifies—makes concrete and specific—
the ways in which the component serves its clients. A
contract is useful to the functioning of a single client,
but is significantly more important in an environment
of one server and many clients. In such cases, the con-
tract guarantees to each client that, whatever the other
clients request, the requested service will be executed
correctly. For example, we must know how our
BankAccount would behave when a client requests a
withdraw() while the BankAccount serves a set-
OverdraftLimit().

To express behavior in concurrent contexts, Ciaran
McHale” proposed attaching to components special
elements called synchronization policies. A subset of
these synchronization policies can be described using
the well-known path-expression formalism.®

Many strategies can be defined to manage intra-
component concurrency. For example, a Mutex strat-
egy could force all services to be mutually exclusive,
ensuring atomicity.

Synchronization Mutex (method a,b) {
// guard for a
a : exec(a) ==
// guard for b
b : exec(a) ==

0 and exec(b) == 0;

0 and exec(b) 0;1}
Then our BankAccount component could use this
Mutex policy between the methods withdraw() and

setOverdraftLimit(), as follows:

Interface BankAccount
use Mutex(withdraw,
setOverdraftLimit) {
// As before.
}

The synchronization contract is reified so that its bind-
ing to an object can differ from time to time, and so
that various objects can share the same synchroniza-
tion policy.

Java provides a stripped-down version of synchro-
nization through the keyword “synchronized,” which
specifies that a given block or method should be run
in mutual exclusion with other operations on the same
object. While this method lacks the expressive power
and versatility of McHale’s synchronization policies,
it is superior to implementing locks explicitly.

Quality-of-service contracts

Now that we’ve expressed, qualified, and contrac-
tually defined all behavioral properties, we can quan-
tify the expected behavior or offer the means to
negotiate these values. You can specify the quality-of-
service contract statically by enumerating the features
the server objects will respect. Alternatively, you can
implement a more dynamic solution that conducts
negotiations between the object client and its server.

Common examples of quality-of-service parame-
ters that may be exposed by a server are

e maximum response delay;

* average response;

 quality of the result, expressed as precision; and

« result throughput for multiobject answers such
as data streams.

The main difficulty with satisfying such contracts is
that they rely on third parties, which do not offer per-
formance guarantees. Thus, these quantified contracts
can be used only if their use is generalized. Several
works deal with adding quality-of-service control to
component-based software and propose extensions to
CORBA with quality-of-service specifications.®

CONTRACT MANAGEMENT

To a great extent, contract management issues are
independent of the contract’s level. We focus on the
interactions that arise between a component and the
client code that binds to the component’s interfaces and
requests services through them. Contract management
deals with contract definition, subscription, application
(including handling contract violations), termination,
and deletion. Because contract and interface issues
closely interlink, many aspects of contract management
link to aspects of component management.

Several moments serve as milestones in a compo-
nent’s life: build time, load time, service exposition
time, service request time, and unload time. Using the
following implementation examples for each contract
level—

e aplain CORBA IDL at level 1,

« Eiffel mechanisms for design by contracts at level
2,

« the Service Object Synchronization (SOS) mech-
anism at level 3, and

¢ TAO (the Adaptive Communication Environ-
ment object request broker)'©** and the Rusken
computer-aided cooperative work environment*?
at level 4

—we sketch relationships between these particular
moments using existing contract-implementation
schemes.

Contract definition and subscription

Although typical level 1 and 2 implementations
bind these aspects so closely that they become indis-
tinguishable, contract subscription and contract def-
inition differ significantly at levels 3 and 4. At higher
levels, defined contracts can be selected and tailored
through subscription to accommodate dynamic oper-
ating conditions or client needs.

Definition. Contract definition is the feature set that
fully describes the service offered by a component;
definition time is the time a component makes the fea-
ture set available to customers as potential client code.

In level 1 components, such as exposing standard
CORBA IDL definitions, contract definition time is
the same as component-build time. The same rela-
tionship applies to level 2 contracts, which use Eiffel-
like contracts: Preconditions, postconditions, and
invariants are bound syntactically and semantically
to method signatures.

Level 3 contracts, such as those provided by the SOS
proposal, separate data properties (preconditions,
postconditions, invariants) from control properties
(invocation paths, concurrency). To retain as much
flexibility as possible, this separation must be pre-
served in implementations.

Data and control constraints must, however, be
merged before requests can be issued. This merge could
take place at service exposition time, when a compo-
nent exposes its interfaces. Choosing which control
specification should be used with which data service is
left to the configuration of the considered component.

Level 4 contracts also separate data constraints
from control constraints. Stephane Lorcy and col-
leagues,*? for example, reify contracts as instances
from subclasses of the Contract class. This process
completely separates the definition of contracts from
that of the components that provide contract-aware
services. The component thus controls contract defi-
nition time during the component’s execution.

Level 4 contract reification allows dynamic adap-
tation of the contract to environmental changes, while
level 3 contract reification enables a static choice under
the service provider’s responsibility. This static choice
can be updated from time to time. Thus, a shared
resource such as a printer can change its priority man-
agement policy from “first arrived, first served” to
“largest job first.”” Such updating differs from level 4

contract negotiation in that it involves all clients
simultaneously, while level 4 involves only a
single client.

Subscription. We define contract subscription
to mean the following:

« selection of a contract among a set of pos-
sible contracts,

« selection of parameter values when con-
tracts have parameters, and

< agreement of both client and component
parts regarding use of a contract in later
service request execution.

Depending on the contract level and the typical
implementations, contract subscription times differ
broadly.

¢ Level 1 contracts are subscribed when the client
code is bound to a component’s interface defini-
tion.

¢ Level 2 Eiffel-like contracts are also bound at
interface definition time.

¢ Level 3 SOS-like contracts may be bound at com-
ponent load time or later, at interface definition
time, depending on the component’s behavior.

¢ Level 4 TAO- and Rusken-like contracts can be
subscribed at any time prior to a service invoca-
tion, and can be changed or negotiated when the
need arises.

Acquiring the ability to alter contracts in response
to changing needs provided a strong reason for defin-
ing contracts as objects. Thus defined, contracts can
be tailored at application design time by subclassing
or aggregation: Several specialized subclasses of the
Contract class provide a starting point for producing
specific contracts for specific needs. Contracts can also
be tailored at runtime during a negotiation phase.

Before a customer sends a request to a provider
component, a contract object must be established
between them. The customer selects a contract from
the set exported by the customer, sets up parameters
such as delays or other properties specific to the con-
tract subclass chosen by the customer, then submits
the contract for approval to the service provider. This
provider then examines the desired terms of the con-
tract and tunes them to make the request feasible. The
contract is then returned to the customer for approval.

Should the customer reject the reconfigured con-
tract, other contracts from other classes, such as those
with weaker quality-of-service features, may be tried.
The negotiation phase plays an important role in the
Rusken scheme because quality of service involves
both a customer (which has needs) and a provider
(which has means): A scheme in which a customer

Acquiring the ability
to alter contracts in

response to
changing needs
provided a strong
reason for defining
contracts as
objects.

We must make

components contract

aware if we are
serious about

developing mission-
critical applications
based on third-party

components.

requires quality-of-service features blindly is not
realistic in a world of components loaded with
heterogeneity and instability. Further, a provider
component also relies on other components as
subcontractors and must negotiate subcon-
tracts. Finally, components often include
dynamic interface presentation and, thus, qual-
ity of service must also obey this property while
taking advantage of it.

Contract application
This aspect of contract management involves
checking and handling violations.

Checking contracts. Provided there is enough the-
orem-proving machinery, some level 1 and 2 contracts
could be checked statically, but most require some
kind of runtime monitoring. This requirement forces
us to decide if the check takes place on the client or
server side. If dealing with static, third-party compo-
nents, it is probably more efficient to monitor the con-
tract on the client side. In a concurrent system,
however, the component’s state could change between
the moment we do the check and the moment we call
one of its methods. This suggests establishing a rei-
fied contract monitor somewhere in the component
middleware. The monitor would then cooperate with
the request broker, and should be sufficiently intelli-
gent to optimize out some of the message passing
when only one client is connected to a given compo-
nent.

Handling violations. When the system detects that
a contract has been broken—say, for example, a
client tries to withdraw too much money from a
BankAccount file—an action can be undertaken. We
have identified four possible actions:

1. Ignore. Proceed with the operation, ignoring any
adverse effect. This is the effect of disabling the
assertion checking in Eiffel, C++, and others.

2. Reject. In modern programming languages like
Java, Eiffel, and C++, the reject action involves
raising an exception and propagating it to the
client. Older environments such as Unix C
libraries returned a completion status to the client
as the result of the “function call.”

3. Wait. This action blocks the client call until the
contract becomes valid through, for example, a
wait for a deposit() or setOverdraftLimit() oper-
ation that could change the truth value of the
withdraw() precondition. Clearly this option has
no application to sequential programs, but it is
the default behavior for so-called separate objects
in Eiffel’s concurrency extension proposal.®

4. Negotiate. Failure of the contract may be solved
by retrying (in the case of a network failure) or
renegotiating its terms.

Contract termination and deletion

These activities share a highly symmetric relationship
to contract definition and subscription. Level 1 and 2
contracts are terminated on service interface termina-
tion, which in turn occurs upon component unloading.
Level 3 and 4 contracts, such as SOS and Rusken
schemes, allow unilateral contract termination by a con-
tract partner. Such terminations often occur to cope with
changes in the environment, such as quality-of-service
variations exported by the component’s providers.
Level 3 or level 4 contracts can be deleted by removing
their definition from the component’s interface.

TOWARD A UNIFIED FRAMEWORK

We must make components contract aware if we
are serious about developing mission-critical applica-
tions based on third-party components. Making con-
tracts explicit improves confidence. The easiest way
to achieve this goal is to design a new, component-ori-
ented language that features in its semantics the vari-
ous concepts we’ve outlined.

If we want the idea of contractible components to
succeed, however, we must strive to integrate contract
awareness concepts into popular component frame-
works. Thus we propose building on existing technolo-
gies such as COM, CORBA, and JavaBeans by making
contractible components available on demand for these
platforms. This option means you pay for performance
overhead only if you use the component.

Having described the many possible times at which
contract definition, subscription, and application
occur, we now elaborate on our BankAccount exam-
ple to estimate how several of these techniques could
be unified, and give some preliminary form for a con-
tract-aware component technology.

For brevity’s sake, we exclude schemes that bind
contract subscription to service requests. We focus
rather on binding service request times with contract
subscription ones. Further, we base our examples on
dynamic-interface-binding programming styles.

Discovering contract-aware interfaces

Contractible components should export the basic
interface-discovery interface ContractAwareComponent.
This interface includes a QuerylInterface() method for
browsing contractible service interfaces.

interface ContractAwareComponent {
// Basic interface query system,
// with provision for contracts
CtServiceInterface QueryInterface(
String interfaceUniversalName) ;

3

The CtServicelnterface defines the interface base for
contract-aware service interfaces. Hence all contract-

aware interfaces should derive from CtServicelnterface.

This interface also defines contract management
operations and divides them into the categories pre-
viously described.

Contract definition. Once a client has a reference to
an interface object with a CtServicelnterface, it can
get the interface to export these contracts by using its
QueryContract() method.

Contract objects contain all the information for
level 2, 3, and 4 contracts managed by the service
interface; level 1 contract information is available
from the interface description itself.

interface Contract {

// Behavior and Synchronization
// Contracts

BehavioralContract
behaviorDescription();
SynchronizationContract
synchroDescription();

// Returns true iff the contract has
// been changed by the component
boolean changed() ;

}

BehavioralContract and SynchronizationContract
interfaces provide all level 2 and 3 contract informa-
tion by any suitable means] for example, an XML-
formatted description of the contracts expressed using
UML and OCL formalisms. Although both types of
contracts are usually nonnegotiable, the contract inter-
face can be extended to handle negotiable quality-
of-service issues, and level 4 contracts are often nego-
tiable.

Contract subscription. Client code can fill in con-
tract parameters provided by QueryContract(), then
call Propose() to have the configured contract accepted
by the component. If the contract configuration has
been updated by the component to propose reason-
able values, the method changed() returns a true
result. For example, a component may adjust a ser-
vice delay to some realistic value.

When the client code agrees to the last contract
configuration, it can accept it by calling Accept() from
the CtServicelnterface. The result value is the con-
tract a customer must use in future request submis-
sions. We supplied this provision because the provider
may change the contract internally upon accep-
tance—to add, for example, implementation details
used in future request invocation. Moreover, we need
a rejection primitive to cope with the frequent case
where a component uses subcontractors. In such a
case, client code aborts the negotiation phase by call-
ing Reject().

Thus, the CtServicelnterface takes the following
form:

interface BankAccount CtServiceInterface {
void deposit(in Money amount) ;

void withdraw(in Money amount) ;

Money balance();

Money overdraftLimit() ;

void setOverdraftLimit (in Money newLimit) ;

i

interface BankAccountContract Contract {
// Extend Contract with negotiable QoS contracts
double maxRequestDelay () ;

void setMaxRequestDelay(in double 4d);

}

Figure 3. One possible contract definition for a simple bank account management system.

interface CtServicelnterface {
// Get a contract for a given
// service interface

Contract QueryContract();

void Propose(inout Contract c);
void Accept(inout Contract c);
void Reject(in Contract c);

Contract application. Once a contract has been sub-

scribed, client code can issue contract-aware service
requests. The component maintains a contract con-
text together with the interface it provided as the
return value of the QuerylInterface() call. Hence no
ancillary Contract parameter is necessary to request
aservice. Indeed, adding contract capabilities to some
existing component does not imply alterations of ser-
vice interface methods. However, we must provide
some means to monitor the application of contracts.
The predicate Failed() serves this purpose by return-
ing a true result if and only if the last use of the sub-
scribed contract failed. This style of explicit
synchronous check can be enhanced to deal with
implicit checks by, for example, using exceptions as
provided by the environment.

// Returns true iff last service
// execution

// did not comply with

// contract terms.

boolean Failed();

Contract termination. Client code may terminate a

contract subscription by calling the Terminate
method from CtServicelnterface.

void Terminate(Contract c);

}

Using the BankAccount example

We now sketch out a possible contract definition
for the BankAccount example, shown in Figure 3.
Next, in Figure 4 we sketch some simple, Java-style
code for getting a component and contract definition,
subscribing to the contract, applying it by requesting
a deposit, and finally terminating the contract.

BankAccountComponent component =
Orb.GetComponent (“Bank account manager”) ;
BankAccount bankInterface =
(BankAccount)
component.QueryInterface (“BankAccount”) ;
BankAccountContract myContract =
(BankAccountContract)
bankInterface.QueryContract () ;
// Client code sets up maximum acceptable response
// time for all requests
myContract.setMaxRequestDelay (1000) ;
bankInterface.Propose(myContract) ;
if (! myContract.changed()) {
// Component ready to accept contract with no
// changes:
// notify acceptance to component
bankInterface.Accept (myContract) ;
// Use contract (implicitly) by requesting a
// deposit.
bankInterface.deposit (500) ;
if (bankInterface.Failed()) {
System.println(“Request execution” +
“did not comply with contract terms”);
} else {
System.println(“Deposit succeeded”);
}
} else {
// Don’t accept the new terms of the contract
bankInterface.Reject (myContract) ;

Figure 4. An example of simple Java-style code for accessing, applying, and terminat-
ing a contract in a bank account management system.

This example shows that contracts offer a power-
ful tool for enhancing the versatility and functionality
of components.

Reusing software components in mission-critical
applications cannot succeed if the components do
not export clearly stated service guarantees.

Indeed, a would-be component user cannot trust a
component without strong statements from it. Several
aspects of contractible-components technology have
already been implemented in various projects.®*2 \We
must now unify these implementations and general-
ize them to all standard component platforms so that
mission-critical application designers can gain the full
benefits of contractible components. This gain, how-
ever, will be effective only if developers consider their
work as one link in a customer/provider chain. Links
are hooked together at various levels with contracts.
You build trust in the chain with contract-checking
mechanisms. Although some techniques for checking
contracts already exist, much research is still needed

to deal with the palette of contracts we’ve outlined in
this article. A key point would be the definition of a
standard contract description language or notation
mapped to the already existing contract techniques,
as for the level 1 contract with IDL.

Classical component-based software such as net-
work computer systems and interactive, distributed
applications that run on the Internet are natural can-
didates for contract-based components. Any distrib-
uted software with soft real-time constraints, such as
telecom software, would benefit from this approach. [

References

1. J.-M. Jézéquel and B. Meyer, “Design by Contract: The
Lessons of Ariane,” Computer, Jan. 1997, pp. 129-130.

2. E.J. Weyuker, “Testing Component-Based Software: A
Cautionary Tale,” IEEE Software, Sept. 1998, pp. 54-
59.

3. B. Meyer, “Applying ‘Design by Contract,””” Computer,
Oct. 1992, pp. 40-52.

4. R. Kramer, “iContract—The Java Design by Contract
Tool,” TOOLS 26: Technology of Object-Oriented Lan-
guages and Systems, IEEE CS Press, Los Alamitos, Calif.,
1998, pp. 295-307.

5. J. Warmer and A. Kleppe, The Object Constraint Lan-
guage, Addison Wesley Longman, Reading, Mass., 1998.

6. B. Meyer, Object-Oriented Software Construction, 2nd
ed., Prentice Hall, Upper Saddle River, N.J., 1997.

7. C. McHale, Synchronization in Concurrent, Object-Ori-
ented Languages: Expressive Power, Genericity and
Inheritance, doctoral dissertation, Trinity College, Dept.
Computer Science, Dublin, 1994.

8. R.H. Campbell and A.N. Habermann, “The Specifica-
tion of Process Synchronizations by Path Expressions,”
Lecture Notes in Computer Science, E. Gelenbe and C.
Kaiser, eds., Vol. 16 Int’l Symp. Operating Systems,
Springer-Verlag, Berlin, 1974, pp. 89-102

9. Z. Choukair and A. Beugnard, “Real-time Object-
Oriented Distributed Processing with COREMO,”
Object Oriented Technology: Ecoop 97 Workshop
Reader, J. Bosh and S. Mitchell, eds., Springer-Verlag,
Berlin, 1998.

10. D.C. Schmidt, D.L. Levine, and S. Mungee, “The Design
of the TAO Real-Time Object Request Broker,” IEEE
Computer Comm. J., Vol. 21, No. 4, 1998, pp. 294-324.

11. D. Watkins, “Using Interface Definition Languages to
Support Path Expressions and Programming by Con-
tract,” TOOLS 26: Technology of Object-Oriented Lan-
guages and Systems, IEEE CS Press, Los Alamitos, Calif.,
Aug. 1998, pp. 308-319.

12. S. Lorcy, N. Plouzeau, and J.-M. Jézéquel, “Reifying
Quality of Service Contracts for Distributed Software,”
TOOLS 26: Technology of Object-Oriented Languages
and Systems, IEEE CS Press, Los Alamitos, Calif., Aug.
1998, pp. 125-139.

Antoine Beugnard is an assistant professor of computer science at Ecole
Nationale Supérieure des Téléecommunications de Bretagne, Brest, France.
His main research activities deal with distributed object-oriented software
architecture. Beugnard received a PhD in computer science from the Uni-
versity of Rennes.

Jean-Marc Jézéquel is a research manager at Irisa/CNRS. His research inter-
ests deal with object-oriented software engineering for distributed systems.
He received a PhD in computer science from the University of Rennes,
France.

Noél Plouzeau is an assistant professor of computer science at the Univer-
sity of Rennes, France. His main research activities deal with object-oriented
and component-oriented software construction techniques, notably design
of distributed and time-bound applications such as computer-supported
cooperative work environments. Plouzeau received a PhD in computer sci-
ence from the University of Rennes.

Damien Watkins is a PhD student at Monash University, Australia. He is
interested in improving current component technologies in the context of
distributed systems.

Contact the authors at antoine.beugnard@enst-bretagne.fr, {jezequel,
plouzeau} @irisa.fr, damien.watkins@csse.monash.edu.au.

