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Abstract

This paper copes with the reconstruction of accretionary growth sequence from images of bio-

logical structures depicting concentric ring patterns. Accretionary growth shapes are modeled as

the level-sets of a potential function. Given an image of biological structure, the reconstruction

of the sequence of growth shapes is stated as a variational framework derived from geometric

criteria. This variational setting exploits image-based information, in terms of the orientation

field of relevant image structures, which leads to an original advection term. The resolution

of this variational issue is discussed. Experiments on synthetic and real data are reported to

validate the proposed approach.

Keywords: shape matching, accretionary morphogenesis, level-set, inverse problem1

1 Introduction and problem statement2

A number of biological structures, for instance corals, seashells, fish otoliths 1, tree trunks or verte-3

brae grow according to an accretionary process. In other words, they can be viewed as a succession4

of three-dimensional concentric layers (with respect to an initial core). The composition of these5

layers, in terms of crystalline organization and chemical features, vary according to endogenous and6

exogenous factors [25]. Often, the accretionary process is associated with a periodic, mainly daily7

or seasonal, scheme, such that the observation of these biological structures in an observation plane8

going through the initial core depict concentric ring patterns, also called grwoth marks, as illus-9

trated in Fig.1. These characteristics provide the basis for exploiting these structures as biological10

archives to define environmental proxies (e.g., for instance to reconstruct temperature and salinity11

sequences) [8] or to reconstruct individual life traits (e.g., individual age and growth information or12

migration paths) [16]. To further stress the key importance of these biological structures in marine13

1Fish otoliths are calcified structures present in fish inner ears
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Figure 1: Illustration of the goal of the paper: image of a pollock otolith in a given observation

plane containing the growth center (left); reconstructed series of the evolved shapes (right).

ecology, it can be pointed out for instance that several millions of fish otoliths are analyzed each1

year for fisheries management.2

New computational tools [15, 16] are sought to improve the understanding, the modeling and the3

decoding of these biological archives. Their shape characteristics have been extensively exploited4

[4]. Though the presence of internal growth rings provide the mean for back-tracking the temporal5

evolution of the shape from the core to the outline, the actual analysis and reconstruction of this6

morphogenesis sequence have not been investigated. From an image processing perspective, the7

reconstruction of the morphogenesis of the considered biological structures within an observation8

plane2 can be viewed as the reconstruction of the shape deformation from the initial circular core9

to the observed outline as illustrated in Fig.1. Mathematically-sound solutions [6, 30] have been10

proposed to determine the deformation path between any two shapes. The direct application11

of these schemes would however first require extracting the internal growth rings. Whereas the12

detection of the growth center and the detection of the external shape may be automated [5], the13

automated extraction of internal growth rings is a particularly complex task due to the presence of14

blind areas and so-called subjective contours [19, 15]. Image orientations, i.e. the local orientations15

2In the subsequent, the term “observation plane” will only refer to an observation plane containing the initial core

of the analyzed biological structure
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of image structures [9], however locally convey relevant information on the shape of the growth rings,1

since they can be viewed as estimations of the local growth directions. Consequently, we state the2

reconstruction of the accretionary growth sequence as the computation of the deformation shape3

between the initial core and the outline such that any intermediary shape should be normal to local4

image orientations.5

To this end, we adopt a level-set setting to model the accretionnary growth process. Coupling6

a priori constraints on shape regularity and image-based information in terms of local shape orien-7

tation, the considered issue resorts to a variational level-set interpolation. This paper is organized8

as follows. Section 2 details the proposed variational framework. Minimization issue are described9

in Section 3. Experiments and concluding remarks are reported in Sections 4 and 5.10

2 Proposed approach11

2.1 Level-set setting12

As suggested in the seminal work of Thompson [27], we adopt a level-set setting to represent the

accretionary growth process. It comes to introduce a potential function U defined over R2 such

that the shape Γt(U) of the considered biological structure within a given observation plane at time

t is given by the level set of U :

Γt(U) = {p ∈ R2 such that U(p) = f(t)} (1)

where f is a strictly monotonic continuous function. Given U , the sequence of level sets {Γt(U)}[0,T ]13

represents the evolution of the shape from time 0 to time T. This representation conforms to the14

classical assumption that accretionary growth is locally normal to the shape. The growth increment15

at any point p is indeed inversely proportional to ∇U(p), which is, by definition, normal in p to16

4



f(t0)

f(0)

x

Otolith image

f(t)

f(t1)

Figure 2: Level-set representation of the accretionary growth process: the evolution of the shape

is described by a potential function U , such that the growth shape at time t is given by level-line

Γt(U) = {p ∈ R2 such that U(p) = f(t)} with f a continuous and strictly monotonic function.

level-set ΓU(p)(U).1

Let us stress that this level-set representation is generic. Convex as well as non-convex shapes2

are represented. Besides, secondary growth centers could also be taken into account, though this3

point is not investigated in this paper.4

2.2 Geometric priors and orientation-based constraints5

Given an image of the considered biological structure in a given observation plane, our goal is6

to reconstruct the potential function U associated with the underlying accretionary growth. Let7

us stress that the proposed level-set representation provides a relevant framework to solve for the8

inverse problem, since it intrinsically conveys the key geometric properties of the accretionary9

growth: concentricity and local parallelism of the successive level-sets. Besides, as shown below,10

such a representation offers a powerful tool to transform a purely geometric setting to a variational11
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a b

Figure 3: Geometric priors and orientation-based information exploited to constrain the recon-

struction of the accretionary morphogenesis: (a) example of boundary conditions given as a point

or curve set for which potential values are known (depicted as black curve superimposed to the image

of the considered biological structure), (b) example of orientation field computed from the image of

the considered biological structure(the orientation field is visualized via its field line using LIC [3]).

minimization issue.1

Formally, we assume that we are given with some boundary conditions as illustrated in Fig.2.2.a:2

at least the shapes at times 0 and T, but additional constraints can be considered such as internal3

partial or complete growth rings. These conditions are stated as a set of points or curves for which4

the potential value is known. Let us denote by B this point set and GB the associated potential5

values. Solving for the reconstruction of U is then stated as the computation of its extension from6

B to the whole domain R2.7

In addition, the image conveys relevant local geometric information in terms of orientations of8

the ring structures. Formally, we assume that an orientation field normal to local growth orienta-9

tions is provided as illustrated in Fig.2.2.b. The interpolation of level-set representation U is then10

be constrained to be locally tangent to this orientation field. A first solution consists in considering11

orientation field ω = ∇I⊥/|∇I| with I the image intensity. Obviously, for low gradient values, the12

computation of the orientation is highly noisy. However, the module of the image gradient can be13
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considered as a meaningful relevance weight [24]. Hence, a confidence map α is defined as g(|∇I|),1

where g is a continuous stepwise function rescaled between 0 and 1. A second solution resorts2

to computing the orientation field as the AMLE (Absolutely Minimizing Lipschitz Extension) of3

the orientations normal to the gradient measures selected by a thresholded Canny-Deriche edge4

filter [9, 13]. As shown in [9], this procedure guarantees to extract smooth orientation field, which5

is expected to better constrain the reconstruction of the 2D morphogenesis. Let us denote by6

ω the provided orientation field and α the associated local confidence map. When using AMLE7

orientation fields, confidence map α is set to one.8

Given boundary constraints {B, GB} and orientation constraints {ω, α}, the extension of U to

the whole domain R2 is defined as the minimization of an energy criterion E:

Û = arg min
U∈U(GB)

E(U), (2)

where U(GB) is the set of the functions from R2 to R whose restriction to B is GB. Energy E(U) is

split into two terms: a regularization term issued from a geometric shape prior and a data-driven

term setting orientation-based constraints,

E(U) = (1 − γ)ER(U) + γEO(U), (3)

where γ is a weighting factor balancing the relative influence of each term.9

The chosen regularity criterion resorts to minimizing the perimeter of any growth shape Γt(U).

Hence, ER(U) is defined as the sum over all level-sets of the unity function:

ER(U) =

∫

t∈[0,T ]

∫

p∈Γt(U)
1 (4)

The second energy term evaluates how the reconstructed growth shapes conform to local growth

orientations ω. Any shape Γt(U) is expected to be normal to orientation field ω. Given that Γt(U)
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is a level-line of U , this is equivalent to the orthogonality between growth directions ∇U/|∇U | and

orientations ω along Γt(U). Therefore, summing over all level-lines of U , EO(U) is defined as

EO(U) =

∫

t∈[0,T ]

∫

p∈Γt(U)
α(p) · ρ

(〈 ∇U(p)

|∇U(p)| , ω(p)

〉)
(5)

where ρ is an error function. In order to account for outliers, a robust function is exploited [20].1

Compared to a classical quadratic term, it ensures the robustness to local incoherences within2

orientation field w. In the subsequent, ρ is set as ρ(x) = |x|.3

2.3 Variational framework4

The above definition of the energy criterion is issued from the summation over all level-lines of U .

The direct minimization of E(U) from this formulation is then infeasible since it first implies to

extract all level-lines of U . The solution comes from the co-area formula which supplies us with an

equivalent computation over R2. More precisely, for any function Ψ, the following result applies

[21]:
∫

t∈[0,T ]

∫

p∈Γt(U)
Ψ =

∫

p∈R2

|∇U |Ψ (6)

Norm |∇U |, inherited from the co-area transform, can be viewed as a weight which gives more5

influence to points where the gradient of the level-set representation is high (conversely, where the6

growth is slow).7

Using the formulations of energy terms ER(U) and ERO(U), we resort to the following varia-

tional issue:

Û = arg min
U∈U(GB)

∫

p∈R2

(1 − γ) · |∇U | + γ · α · |〈∇U,ω〉| (7)

The reconstruction of the series of growth shapes can then be regarded as a variational inter-8

polation of the potential field U given boundary constraints GB. The minimization to be solved9
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for involve two classical terms that are encountered in the resolution of inverse problems for two-1

dimensional data, for instance in image analysis [26]. The first term is as regularization term2

computed as a function of the norm of the image gradient. Here, we resort to the total variation3

criterion, widely exploited for image denoising [14, 26]. Contrarily to a quadratic criterion, the4

minimization of the total variation is associated to an anisotropic diffusion, better accounting for5

geometric image structures. The second term, often referred as the data-driven term, aims at align-6

ing the orientation field of U to orientation constraints ω. A similar term has been used for the7

reconstruction of dense orientation fields in fingerprint images within a Markovian and quadratic8

setting [12].9

2.4 Additional constraints10

Minimization (7) is issued from purely geometric constraints. As level-set representations are11

contrast invariant (i.e., a contrast change does not affect the geometry of the level-sets but only12

the indexes of the level-sets) [22], additional constraints on U are needed to numerically solve for13

Eq.(7). For instance, if the boundary set is given by the growth center at time 0 and the final shape14

at time T , solving for Eq.(7) converges to an unstable solution constant everywhere except at the15

point corresponding to the growth center.16

To account for this issue, a theoretical solution would be that the surface between two successive17

level-lines Γt(U) and Γt+dt(U) is constrained by the instantaneous accretionary deposit at time t.18

Since the actual instantaneous growth rate is generally unknown, we cannot straightforwardly19

exploit this constraint. However, setting constraints on the surface between successive level-lines20

is equivalent to setting constraints on first-order statistics p(U) of U . In fact, the knowledge of the21

law of the accretionary deposit comes to set the form of this statistical distribution. Therefore,22
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we choose a prior on p(U) to impose additional constraints on U . For the sake of simplicity, the1

uniform distribution has been selected in this work, but other priors might be relevant. Let us2

stress that changing from one prior to another simply consists in a contrast change.3

Hence, the variational interpolation finally comes to solve for

min
U∈U(GB)

∫

p∈R2

(1 − γ) · |∇U | + γ · α · |〈∇U,ω〉| , (8)

subject to p(U) is uniform.4

3 Numerical resolution5

To solve for the above constrained minimization, we adopt a two-step iterative approach: the first6

step comes to project the current solution onto the set of level-representations with uniform first-7

order statistics. We detail below the unconstrained minimization. To improve the convergence, a8

multiresolution framework is adopted.9

3.1 Unconstrained minimization10

To solve for the minimization of E with respect to U , Euler-Lagrange equations [1] provide the

expression of the gradient of E. Given that the L1 norm is not derivable in zero, it is approximated

as
√

ε2 + x2. We let the reader refer to [26] for the analysis of the total variation criterion whose

gradient is given by:

(ε2
R + U2

x)Uxx − 2UyUxU2
xy + (ε2

R + U2
y )Uyy

(
ε2
R + ∇U2

)3/2
(9)
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Neglecting the variations of the weight α3, the second term leads to the following gradient:

Ψ(U) = div




〈∇U,ω〉ω
(
ε2
D + 〈∇U,ω〉2

)1/2




=
div(ω) 〈∇U,ω〉

(
ε2
D + 〈∇U,ω〉2

)1/2
+

ε2
D 〈∇∇U · w + ∇ω · ∇U,ω〉

(
ε2
D + 〈∇U,ω〉2

)3/2

(10)

where div is the divergence operator, ∇∇Up the Hessian matrix of U at point p, and ∇ωp the1

gradient matrix (∇wp,x;∇wp,y) with ωp,x and ωp,y the horizontal and vertical component of ωp.2

The expression of Ψ(U) can be compared to PDEs proposed for anisotropic image smoothing3

which reduces to div(〈∇U,ω〉ω) in the case of the smoothing along a single direction ω [28, 29]. The4

first term is a weighted version of advection term 〈∇U,ω〉. This advection equation corresponds5

to the transport of a scalar quantity U preserved by a vector field ω, for instance the transport of6

temperature by wind and currents in meteorology and oceanography. The weighting factor depends7

on div(ω). If ω is issued from the actual morphogenesis potential function, div(ω) is the curvature8

of the true (but unknown) successive growth shapes to be reconstructed.9

The second term involved in the expression of Ψ(U) is a weighted version of the diffusion10

operator along the field lines of ω, ωT∇∇Uw + ωT∇ω∇U , as proposed in [28] for curvature-based11

regularization of images. As
√

ε2 + x2 is used as a numerical approximation of the L1 norm ‖x‖,12

|εD| << 1. Therefore, this second term tends to be negligible.13

From these considerations, the steady-state corresponding to evolution equation dU/dt = Ψ(U)

reduces to advection equation

div(ω) 〈∇U,ω〉 = 0. (11)

3It should be stressed that this confidence map is actually exploited only with orientation fields computed from

image gradients.
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From this steady-state equation, the existence and the uniqueness (up to a contrast change) of the1

solution of the considered inverse problem can be derived.2

Proposition 1 Let φ be a potential function such that ∇φ 6= 0 and div(∇φ⊥/|∇φ|) 6= 0. Let ω be3

the orientation field tangent to the level-lines of Φ.4

Let U be a potential function such that ∇U 6= 0. U is a solution of Eq.11 if and only if it exists5

a strictly monotonic continuous and derivable function g such that U = g(Φ).6

Proof. As ω = ∇φ⊥/|∇Φ⊥|, div(ω) 6= 0. Hence, Eq.11 is equivalent to 〈∇U,ω〉 = 0. As the7

level-lines of a field U can be defined as the lines tangent to ∇U⊥, the latter equation imposes8

level-lines of U and Φ to be aligned. It then exists a continuous and derivable function g such that9

U = g(Φ). Given that ∇U 6= 0 and ∇φ 6= 0, g is strictly monotonic.10

Reciprocally, potential function U = g(Φ), with g a strictly monotonic continuous and derivable11

function, is a solution of Eq.11 �.12

This proposition guarantees that, if direction field ω is the direction field of an unknown po-

tential function, the solutions of Eq.11 are transformed versions of this unknown potential func-

tion with respect to a contrast change. Note also that this is only valid for a domain on which

div(∇φ⊥/|∇φ|) 6= 0. Assuming that only isolated points do not fulfill this condition, this results

can be extended to the whole domain by continuity. Condition div(∇φ⊥/|∇φ|) 6= 0 indeed re-

sorts to considering that the curvature of the level-lines is not null. Formally, such an assumption

seems reasonable for the studied biological phenomena: they rather involve round or elliptic growth

shapes and the formation of growth shapes involving perfect straight lines seems unlikely. From a

numerical point of view, numerical unstabilities have however been observed in practice when using

directly the gradient-descent issued from Euler-Lagrange equations. These numerical unstabilities

may be due to weighting factor div(ω) since growth shapes far from the growth center tend to
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become locally closer to straight lines. Consequently, to ensure a better numerical resolution, we

prefer exploiting an explicit Gauss-Seidel scheme. Given that Eq.11 does not lead to a linear system,

the Gauss-Seidel scheme is derived from the discrete version of the considered variational criterion.

Considering a finite difference approximations of |∇U | similar to Markovian setting [17, 23], we

resort to:

(1 − γ)
∑

(p,q)∈N

ρεR
(Up − Uq) + γ

∑

p∈R2

αp · ρεD
(〈∇Up, ωp〉) , (12)

where N is the four-neighborhood system and (i.e., the neighborhood of a point is given its four

western, northern, eastern and southern neighbors in the image). The minimization of the discrete

energy involving robust functions is carried out using an iterated reweighted least square (IRLS)

scheme, which iterates two steps: the computation of robust weights

βR(p, q) = φR (Up − Uq) (13)

and

βD(p) = φD (〈∇Up, ωp〉) , (14)

where function φ is the influence function associated with robust estimator ρ computed as φ(x) =

ρ′(x)/x (these robust weights are low for high residual error, i.e. outliers, and high for low residuals);

and solving for the weighted least square minimization

min
U∈U(GB)

(1 − γ)
∑

(p,q)∈N

βR(p, q) · |Up − Uq|2 + γ
∑

p∈R2

αp · βD(p) · 〈∇Up, ωp〉2 (15)

given robust weight maps βR and βD. This least square estimation is indeed solved for using a1

Gauss-Seidel scheme. Up is iteratively updated by explicitly solving for the quadratic minimization2

(15) under the assumption that U is constant except at point p. The associated computations3

based on a centered numerical approximation of ∇Up are detailed in Annex.4
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3.2 Reprojection onto the constrained subspace1

The projection of the current solution U onto the set of level-set representation with uniform first-2

order statistics can be viewed as an histogram equalization. As histogram equalization can be3

implemented as a PDE scheme [6], constrained minimization (8) could be solved by coupling the4

PDE issued from the gradient of E to the one proposed in [6]. However, as stressed above, such5

a PDE-based scheme is numerically unstable and a discrete Gauss-Seidel minimization scheme is6

preferred. The histogram equalization is applied as a second step after the Gauss-Seidel loop. Given7

Ũ , the distribution of the potential values p(Ũ is computed as well as their cumulative distribution8

F (Ũ). Aligning F (Ũ ) to line y = x provides us with a contrast change approximately leading9

to a uniform distribution p(U). As stressed previously, this transformation does not modify the10

geometry of the level lines but only their relative potential values.11

3.3 Multiresolution minimization12

Minimization (7) is obviously not convex. To ensure a better robustness to the initialization,13

a multiresolution scheme is used. Given a Gaussian pyramid of the orientation field ω [2], the14

multiresolution approach comes to solve for the estimation of the potential function U at successive15

resolutions, from the coarsest resolution to the finest one. The final estimate at a given resolution16

serves as the initialization at the next resolution. In practice, Gaussian pyramids with four levels17

were exploited.18

3.4 Initialization19

The computation of a relevant initialization to the proposed gradient-based multiresolution scheme20

is important to ensure a fast and relevant convergence. The initialization is delivered by the21
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Figure 4: Examples of extracted growth orientation fields from local image orientations for the image

of a pollock (Pollachius pollachius) otolith depicted in Fig.1: visualization of the orientation field

issued from the image gradient (left), visualization of the orientation field computed as the AMLE

(Absolutely Minimizing Lipschitz Extension) of automatically selected gradient measures depicted

by black lines (right). Orientation fields are visualized via their field lines using LIC) [3].

scalar AMLE (Absolutely Minimizing Lipschitz Extension) of the boundary conditions to the whole1

domain [7]. Since the AMLE resorts to the minimization of the L∞ norm, the AMLE can be viewed2

as the less smooth interpolation operator among all smooth interpolation operator. The AMLE is3

implemented as gradient descent ∂U/dt = U∇∇ where U∇∇ is the second-order derivative in the4

direction of the gradient of U . It is shown to converge to the unique AMLE. The key properties5

of the AMLE is that it is an artifact-free and oscillation-free interpolant actually capable of taking6

into account isolated boundary points as well as curves.7

4 Results8

4.1 Extraction of the orientation fields9

The proposed approach initially relies on the extraction of orientation field ω. As detailed previ-10

ously, orientation field ω = ∇I/|∇I| computed from the image gradient ∇I is first investigated. The11

second solution comes to computing ω as the AMLE of the orientations of the gradient measures12
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selected by a thresholded Canny-Deriche edge filter [9, 13]. Fig. 4 reports the orientation fields1

issued from these two schemes for the image depicted in Fig.1. These orientation fields are visual-2

ized via their field lines, using Line Integral Convolution (LIC) [3]. As expected, orientation field3

ω = ∇I/|∇I| is not globally coherent and only orientation information along image contours may4

be meaningful. On the contrary, the AMLE orientation field is much smoother. It conveys relevant5

geometric cues, which are expected to better constrain the reconstruction of the 2D morphogenesis.6

4.2 Examples of reconstruction of the series of growth shapes7

To illustrate the different steps of our approach, we first display the reconstruction of the series8

of growth shape for the pollock otolith image previously depicted in Fig.1. The results of the9

reconstructions of the morphogenesis associated with the orientation fields issued from the image10

gradient and the AMLE scheme are compared in Fig. 5. Besides, reconstructions issued for two11

different configurations of boundary constraints GB: the first example only involves the position of12

the growth center, whereas the growth center as well as the first translucent ring is given in the13

second example. Parameters γ, εR and εD are respectively set to 0.6, 0.1 and 0.1 for the first case14

and to 0.9, 0.1 and 0.1 for the latter. Equally sampled level lines {Γt(U)} superimposed to the15

otolith image are reported. Due to the weaker coherence of the gradient-based orientation field,16

the minimization of the variational criterion does not lead to very regular level lines in that case.17

If only the growth center is provided, such orientation information is not sufficient to reconstruct18

relevant growth shapes, especially for the first two rings. The additional boundary constraint given19

as the first bright ring permits to greatly improve the reconstruction of the series of growth shape.20

The results issued from the AMLE orientation field clearly depict more regular shapes which fit21

to the internal otolith structures. In addition, the two boundary constraints lead to very similar22
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results: few differences can be observed and mainly occur in the ventral lobe (left part) of the first1

translucent ring. Concerning computational time, the proposed scheme is implemented as a C code2

under linux and runs in about half a minute for a 500x1000 image.3

To further illustrate the role of the two energy terms involved in the proposed variational4

formulation, results are reported for the two configurations processed in Fig.6 and Fig.7 setting γ5

to 0 and 1. If only the regularization term is exploited, the reconstruction of the shapes only relies6

on the geometric prior set in terms of shape regularity and can be viewed as a shape matching7

example [6, 30]. Such prior does not however permit to reconstruct relevant shape deformations8

if only the growth center and the otolith outline is provided. The quality of the reconstruction9

clearly improves if additional boundary constraints are added. While results reported using the10

AMLE orientation field appear very similar for γ = 1 (Fig.7) and γ = 0.9 (Fig.5). It is however11

preferable to impose some minimum regularity (i.e., γ < 1) in order to deal with potential local12

incoherences of the AMLE orientation field. This is indeed further illustrated when the gradient13

orientation-field are used, since the minimization of the variational criterion with γ = 1 does not14

lead to a meaningful configuration even if the first translucent ring is provided (Fig.7). Practically,15

a trade-off has to be achieved between regularity and conformity to the orientation field.16

With a view to further investigating this aspect, experiments are carried out for synthetic data.17

The synthetic image is created as follows. For the otolith image depicted in Fig.1, the boundary18

constraints defined by the set of all translucent rings were exploited to extract a sequence of otolith19

shapes using only the regularization term (i.e., γ = 0). The values of potential function U are20

then converted to intensity using a modulated sinusoidal mapping to generate an image depicting21

a sequence of dark and bright rings. This image is corrupted by a centered Gaussian noise with22

a standard deviation of 10. This test image is associated with a reference potential function UGT23
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which can be used as a reference for performing a quantitative evaluation. Such a quantitative1

evaluation is reported in Fig.8. Both the performances of the variational setting combined to2

gradient-based and AMLE orientation fields were evaluated as a function of the weighting factor γ.3

These results further stress that the AMLE scheme is more robust and more stable. As confirmed4

empirically for real images, γ values between [0.8, 1[ correspond to the best trade-off between5

regularity and conformity to orientation data.6

To further illustrate the flexibility of the proposed scheme, an example of reconstruction of the7

growth shapes is carried out using additional constraints given as annotated segments of an internal8

ring (Fig. 9). This example demonstrates the capability of the proposed variational scheme to take9

such constraints into account in order to improve the reconstruction of the shapes compared to the10

results reported above.11

Experiments for three other fish species, namely plaice (Pleuronectes platessa), cod (Gadhus12

morua) and hake (Merluiccius merluccius), as well as the section of a tree trunk, are presented in13

Fig.10) and Fig.11). Obviously, better results are recovered for the plaice otolith and the section14

of a tree trunk, which involves the clearest structure. The results reported for the whiting (Gadhus15

morua) and cod (Merlangius merlangus) otoliths demonstrate that we are also capable of approx-16

imately recovering the complex and non-uniform evolution of such shapes from lower-contrasted17

images.18

5 Discussion19

We have proposed a scheme aimed at reconstructing from an image the evolution of the shape of20

biological structures involving accretionary growth process. Its key feature is a level-set representa-21

tion, which intrinsically accounts for the major characteristics of the accretionary growth process.22
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From purely geometric criteria on shape regularity and on local orientation coherence with respect1

to the observed image, a variational formulation is derived. The associated minimization is effi-2

ciently solved for within a discrete robust multiresolution framework. Reported results on synthetic3

and real data provides a validation of the proposed approach. In particular, it demonstrates that4

AMLE orientation fields should be preferred to the orientation of image gradient since it conveys5

more relevant geometric information on image structures than image gradients.6

Future work will investigate several refinements and extensions of the present work. Whereas7

uniformity constraints set to the distribution of potential function U are exploited to solve for8

minimization (7), other constraints more closely related to growth dynamics (for instance, a mean9

growth model) might also be exploited. New regularization term ER(U) may also be developed10

to encode a priori knowledge on shape statistics, for instance using an exemplar-based setting11

[11]. 3D morphogenesis reconstruction may also be investigated as an extension of this work12

from the joint analysis of several observation planes. This contribution also provides the basis for13

the development of improved pre-processing (for instance, orientation-based image filtering) and14

information extraction (growth axis, growth rings) tools [10] for the considered biological images.15

In the field of marine ecology, new issues can also be investigated in terms of understanding and16

modeling of biocalcification and accretionary growth process.17
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Appendix: potential update1

The local update of potential U at point p to solve for Eq.15 relies on a centered gradient approx-

imation and is computed as:

Up =

(1 − γ)
∑

q∈Np

βR(p, q) · Uq + γ
∑

q∈NH
p

βD(q)ωq,x 〈Ap,q, ωq〉 + γ
∑

q∈NV
p

βD(q)ωq,y 〈Bp,q, ωq〉

(1 − γ)
∑

q∈Np

βR(p, q) + γ
∑

q∈NH
p

βD(q)ω2
q,x + γ

∑

q∈NV
p

βD(q)ω2
q,y

(16)

where Np comprises the four neighbors of p, NH
p its two horizontal neighbors and NH

p its two2

vertical ones. ωq,x and ωq,y are respectively the horizontal and vertical component of vector ωq.3

Vector Ap,q for point p = (i, j) and its horizontal neighbor q = (i, j + k), k = ∓1, is defined as4

(
Ui,j+2k, (−1)

k+1

2 (Ui+1,j+k − Ui−1,j+k)
)t

. Similarly, vector Bp,q for point p = (i, j) and its vertical5

neighbor q = (i + k, j), k = ∓1, is defined as
(
Ui,j+2k, (−1)

k+1

2 (Ui+1,j+k − Ui−1,j+k)
)t

.6
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Figure 5: Reconstruction of the series of growth shapes for the pollock (Pollachius pollachius) otolith

image depicted above: first row, reconstruction given the otolith center using the gradient-based (left)

and AMLE (right) orientation fields; second row, reconstruction given the otolith center and the

first opaque ring using the gradient-based (left) and AMLE (right) orientation field. Parameter ε

is set to 0.1. The constraints (i.e., the otolith center and the first opaque ring) are superimposed to

the otolith image as black curves, and the equally sampled level sets of the reconstructed potential

function U as white curves.
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Figure 6: Reconstruction of the series of growth shapes for the pollock (Pollachius pollachius) otolith

image depicted above setting γ to 0 (i.e., using only the regularization term): left, given the otolith

center; right, given the otolith center and the first opaque ring. In both cases, the constraints (i.e.,

the otolith center and the first opaque ring) are superimposed to the otolith image as black curves,

and the equally sampled level sets of the reconstructed potential function U as white curves.
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Figure 7: Reconstruction of the series of growth shapes for the pollock (Pollachius pollachius) otolith

image depicted above setting γ to 1 (i.e., using only the data-driven term): first row, results are

obtained knowing the position of the growth center using the gradient-based (left) and AMLE (right)

orientation fields; second row, reconstruction knowing the otolith center and the first opaque ring

using the gradient-based (left) and AMLE (right) orientation field. Parameter ε is set to 0.1 and

weighting factor. The constraints (i.e., the otolith center and the first opaque ring) are superimposed

to the otolith image as black curves, and the equally sampled level sets of the reconstructed potential

function U as white curves.
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Figure 8: Influence of the weighting factor γ on the reconstruction error for a synthetic otolith

image: left, noisy synthetic otolith image; right, reconstruction error using gradient-based and

AMLE orientation field as a function of the weighting factor γ.

Figure 9: Reconstruction of the series of growth shapes for the pollock (Pollachius pollachius) otolith

processed for boundary constraints given by the position of the growth center and two segments of

the first opaque ring: original image (left), series of shape superposed to the otolith image (right

column). These experiments have been carried out using the AMLE orientation field to compute

the data-driven term. Boundary constraints are depicted as black curves in the images.
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Figure 10: Reconstruction of the series of growth shapes for three examples of fish otoliths: a

plaice (Pleuronectes platessa) otolith (first row), a cod (Gadhus morua) otolith (second row), and a

whiting (Merlangius merlangus) otolith (third row. For each row, the otolith image and the series of

shape superposed to the otolith image are reported. The same parameter setting as in the previous

experiments is used.
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Figure 11: Reconstruction of the series of growth shapes of the section of a tree trunk: original

image (left), reconstructed potential function U (left column), series of shape superposed to the

image of the section of the tree trunk (right column). These experiments have been carried out

using the AMLE orientation field to compute the data-driven term. The growth center is depicted

as a black circle.
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