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ABSTRACT 

In this work, we investigated experimentally the hydrodynamics of flows crossing conical diffusers. On our 
previous work (Aloui et al., 2011), CFD turbulent models were validated for flows crossing the critical angle 
(2=16°). Indeed, the PIV data base constructed was exploited to validate a variant of SST-RLC model. 
Taking into account the conical diffuser angle effect, the apparition and the development of vortices were 
observed and studied. The dynamics of the recirculation zones which may be observed at the lower and 
higher parts of the singularity, has not formed the subject of numerous studies. There were no studies that 
characterize the vortices at the conical diffusers in terms of size, centre positions, and vortex intensity. 
Consequently, two conical diffusers were studied using the Particle Image Velocimetry technique (PIV). The 
results illustrate effects of “opening angle” (2=16°) and (2=30°) on the flow structures developed in such 
type of diffusers. From such opening angle of conical diffusers, the progressive angle increasing generates a 
detachment of the boundary layer of the conical diffuser depending on the turbulence level. This detachment 
may lead to a coherent flow structures. We applied the coherent structures criterion 2 to the recorded 
velocity fields to detect and characterize the vortices at the conical diffusers. We used the Proper Orthogonal 
Decomposition (POD) to filter the PIV data base constructed and to extract the most energetic modes. The 
results illustrate that the turbulent flow structures can be constituted using a limited number of energetic 
modes. 
 
Keywords: Conical diffusers; Opening diffuser angle; Flow dynamics; Turbulence; Coherent structures; PIV 
Technique; 2 criterion; Proper Orthogonal Decomposition POD. 

NOMENCLATURE 

ai,j temporal coefficient relating to a mode S the surface which surrounds the point P, 
D measurement field  t time, 
Dh upstream hydraulic diameter  u axial velocity component  

pd  polyamide diameter v radial velocity component  

K 
temporal correlation matrix of the Velocity 
field 

ub mean inlet velocity  

L length  X,Y,Z coordinates  
Q second invariant  n normal vector in the measurement plan 
M point of the wide S λ proper value of the matrix, 
N number of snapshots δi,j coefficient, 
p pressure 2 kinematic criterion, 
PIV velocimetry by Image of Particles  vorticity criterion  



E. Berrich et al. /JAFM, Vol. 9, Special Issue 1, pp. 19-29, 2016.  
 

20 
 

POD Proper Orthogonal Decomposition ρ density 

Rc curvature radius of elbow  Ω 
vorticity vector The surface which 
surrounds the point P

Re Reynolds number   
 

1. INTRODUCTION 

Whether in the fields of energy, chemical 
engineering, food processing, or more generally in 
the capital foods industry, the extreme increase of 
industrial facilities production constraints such as 
cost, reliability, safety, performance, durability, 
requires a precise understanding of flows structures 
through a network of processing elements.  Conical 
diffusers, frequently re-encountered on factories, 
can modify the flow structures and can generate 
vortices which, if sufficiently developed, may affect 
the performance of the production or cleaning in 
place processing or may even lead to the early 
exhaustion of the process circuits. The appearance 
and the amplification of vortex structures involve 
significant kinetic energy or significant oscillations 
in the flow or highly asymmetrical recirculation 
zones. 

We focus on turbulent flows structures in conical 
diffusers by studying experimentally the behaviour 
of turbulent flow crossing two conical diffusers 
with opening angle respectively equals to  2α = 16 ° 
and 30°. This provides a profile of established flow 
(L/Dh>> 70). 

Few studies have been interested to diffusers, either 
by numerical or experimental 
approaches. Regarding the first approach, the 
diffuser was generally considered as isolated 
element. The problem was reduced to a symmetric 
or axisymmetric form (Armfield and Fletcher, 
1989). Edimilson et al. (2004) studied numerically 
turbulent flow in small-angle diffusers and 
contractions using a new wall treatment and a linear 
high Reynolds κ-ε model. The turbulent flow field 
was confined in a circular duct with varying cross 
section. Both expansions and contraction sections 
were investigated. Equations of boundary-layer type 
were used and the linear κ-ε model, in its high 
Reynolds form, was applied. This can limit the 
representatively of the predicted three-dimensional 
structures. In experimental studies, the authors do 
not consider that either moderate angles <16 ° 
(Cockrell and Bradley, 1971; Spencer et al., 1995) 
or are restricted to high values of Reynolds number 
(Re> 1.5 105,Okwuobi et al., 1989), or still consider 
the output of the diffuser as free (Okwuobi et al. 
1989; McDonald and Fox, 1971). However, for 
lower values, the flow through a conical diffuser 
with opening angle 16 ° may reveal a tendency to 
cause an intense stable vortices but limited 
compared to the periphery of the diffuser, a 
relatively small angular sector (Okwuobi et al. 
1989). This phenomenon rarely discussed for 
conical diffusers, may be closer to the asymmetry 
observed for planar diffusers (Kline, 1959; 
Johnston, 1998). However, the specific geometry of 
the latter makes it difficult to transpose the analysis 
of their behaviour to that of conical diffusers. To 
study the hydrodynamic behaviour of the diffuser, 

especially the variation of the velocity profile, the 
researchers has focused mostly on the effect of 
"swirl" considering that the diffuser exit is free 
(McDonald and Fox, 1971; Clausen, 1993). Meyer 
and Nielsen (2004) have more recently looked at the 
effect of a deviation of the incident flux on the flow 
at the outlet of the diffuser, generated by a 
deflection angle of 30 ° elbow placed at the inlet 
diffuser, but have limited their analysis to output 
plane (Meyer and Nielsen; 2004). 

Most of theoretical studies are interested to planar 
diffusers. The few studies found for conical 
diffusers include studies for moderate angles less 
than 16° or more than 16° (Cockrell and Bradley, 
1971; Spencer et al., 1995; Johnston, 1998) with 
large Reynolds numbers (more than 15 104) or 
consider the diffuser exit as being free (Okwuobi  
and Azad, 1973; Mc Donald and Fox, 1971). All 
these works consider that the turbulent flow is fully 
developed in the inlet of the diffuser. For non 
developed turbulent flows in the upstream of 
confined axi-symmetric diffusers, no experimental 
study was found for the critical angle (2=16°). In 
addition, more interest has been conserved to this 
particular singularity. On our previous primary 
work (Aloui et al., 2011), we have qualified the 
setup and validate CFD turbulence model.  

A series of data base including PIV measurements, 
POD post- processing and structures detection 
criterions has been constituted for the conical 
diffusers of “opening angle” (2=16°) and 
(2=30°); specially designed for this work. The 
paper proposes an answer to the questions “How 
does the opening angle affect the hydrodynamic 
structures of flows crossing conical diffusers?”; 
“What are the size, the centre positions, and vortex 
intensity which characterize the vortices at the 
conical diffusers?” 

2. EXPERIMENTAL FACILITY 

Nowadays, computer control and data analysis 
software package are available. In this work, a 
specially designed setup was constructed for the 
study of the angle effects of conical diffusers on 
flows crossing it. We have used the “DANTEC” 
software “Flow Manager” for the PIV 
measurements. 

2.1 Experimental facility and measurement 
techniques 

The test apparatus is schematically displayed in Fig. 
1a. It includes a hydraulic test-section, a tank, a heat 
exchanger, two parallel electromagnetic flow 
meters, a pump, and a frequency variator. The 
hydraulic test-section is made of transparent 
Plexiglas. The choice of this material is justified by 
the laser technique used, the Particles Image 
Velocimetry PIV technique. The diffusers have 
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correlator. The whole system is driven by the 
“DANTEC” software “Flow Manager”. 

The flow field’s area studied is the central section 
of the conical diffuser. For this position, the 
horizontal laser plane was reflected vertically at z = 
0 using a 45° mirror. The CCD camera was placed 
in front of the lighted diffuser section. For the 
treatment of measurements, two interrogation areas 
were been tested: 32 x 32 pixels and 16 x 16 pixels. 
A comparative study of the treatment results 
obtained allows choosing 32 x 32 pixels 
interrogation areas for the study. The PIV 
measurements are done in three principals positions: 
in the singularity, upstream and downstream of it. 
The choice of the measurements plan to position the 
laser plane and CCD camera is delicate. Indeed, this 
depends on the localization of the turbulent 
structures. For certain cases and reasons of checking 
the appearance of the recirculation zones, series of 
measurements are added for moderated Reynolds 
numbers in two other zones of the test section.  

2.2. Coherent structures and POD 
technique 

Chassaing (2000) made a synthesis of several 
definitions of coherent structure concept: 
“Anthony Perry, taking a suggestion of John 
Lumley, defines coherent structure as being 
recurring reasons for the flow. That does not imply 
the concept of order, the scales velocity can be 
unsystematic, but the reasons must have fixed 
characteristics of orientation to which they become 
identifiable. It is, according to Kline, of the 
recurring events which are essential with dynamics 
such as the production of Reynolds tensions, 
kinetic dissipation of turbulence energy, and the 
entities which ensure a momentum transport 
according to Stull. Wygnanski defines it as being 
the prevalent mode of instability”. In practice, 
many criteria are used (Haller, 2005). They play an 
important role in the study of generation and 
dissipation mechanisms in fluid mechanic 
problems. They are usually deduced from the 
velocity gradient tensor. Among all coherent 
structures identification techniques, Proper 
Orthogonal Decomposition (POD) is one of the 
most objectives, because it does not make 
assumptions on the flow (Aloui et al. 2007; Aloui 
et al. 2008). The first experimental application was 
carried out by Payne and Lumley (1967). Sirovich 
(1987) introduced the Snapshots method, which is 
carried out classically from the data characterized 
by an important space resolution and a few 
temporal resolutions (measurements PIV unsolved 
in time). The POD is a promising technique thanks 
to its various advantages (Rehimiet al. 2011). 
Indeed, it is optimal in term of energy 
conservation, and requires only the provision of 
the flow velocity data. It permits to compress data 
because a reduced number of modes is enough for 
well describing and rebuilding the flow structures. 
These various modes resulting from the 
decomposition can have a physical direction 
especially in the presence of coherent structures in 
the flow. 

The analysis of the major structures of turbulent 
flows crossing the conical diffusers is realized. The 
determination of the flow coherent turbulent 
structures was of a big interest. 

The vorticity vector is one of the criteria most 
easily accessible to visualize the turbulent 
structures of the flow. It permits the measure of the 
flow rotation rate. Its direction, specifying the 
rotation axes, is written: 

V   
 

 (1) 

whereV


is the velocity vector,  is the rotational 
operator, and   indicates the vector product. 

Strawn et al. (1999) defined the vortex centre as 
being a local maximum of the vorticity module. In 
2D, the vorticity is written as follows: 

1 v u
( x, y )

2 x y


  
    

                              (2) 

The swirl centre is identified as a local extremum 
of the vorticity function. 

Taking in consideration the swirl local convection, 
the 2 criterion is defined as follows: 

 
  M

2
MM S

PM U u .Z1
P dS

S PM . U u




 



  


  


                          

(3) 

where the local velocity of convection is written 
as: 

S

1
u UdS

S
 

                                (4) 

The 2 criterion is a Galilean invariant 

(Graftieaux et al., 2001). 

The objective of 2  criterion is to extract the 

turbulent structures based on their rotations in the 
flow, because the vorticity  does not make it 
possible to distinguish between shearing and 
rotation.  

At the moment kt , the velocity field kU( x, y,t )


is 

written:  

N
(i ) (i )

k m k
i 1

U(x,y,t ) U (x,y) a (t ) ( x,y)


 
 

  (5) 

where the coefficient of projection ( i )
ka ( t )

checking the following relation: 

N
( i ) ( j )

k k i ij
k 1

a ( t ) a ( t )  


                               (6) 

To suitably filter the various velocity fields 
measured by PIV, the decomposition can be 
limited to M modes. 

According to Sirovich (1987), the POD is a good 
technique if the number of modes M verifies: 
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M

i
i 1

N

i
i 1

90%









 
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   
  
 




               (7) 

where N is the number of Snapshots (velocity 
fields obtained by PIV).  

The POD decomposition permits to filter the PIV 
measurements: 

M
(i ) (i )

f m
i 1

M
(i ) (i )

f m
i 1

U (x,y,t ) U (x,y) a (t ) ( x,y)

(x,y,t ) U (x,y) a (t ) ( x,y)



 






 



   






 

  

   

(8) 

3. RESULTS AND DISCUSSION 

The main purpose of this paper is to illustrate the 
conical diffusers opening angles effects on the 
structures of the turbulent flows crossing it, as it is a 
topic source of vortex creation. In fact, they may 
generate the apparition and the development of 
repetitive and stable vortices. In addition, two 
configurations are adopted: The first one 
corresponds to a conical diffuser with an opening 
angle equal to 2α=16°. The second configuration 
corresponds to 2α=30°. More interest has been 
conserved to the conical diffuser (2α=16°) as it 
presents a critical case i.e no results for this kind of 
conical diffusers have been found in the literature. 
In fact, few studies found for conical diffusers 
include studies for moderate angles less than 16° or 
more than 16° with large Reynolds numbers (more 
than 1.5 105) (Cockrell et Bradley, 1971; Spencer et 
al., 1995; Johnston, 1998, Jiang et al., 2008; Lee et 
al., 2012) or consider the diffuser exit as being free 
(Okwuobi and Azad, 1973; Mc Donald et Fox, 
1971). All these works consider that the turbulent 
flow is fully developed in the inlet of the diffuser. 
For non developed turbulent flows in the upstream 
of confined axi-symmetric diffusers, no 
experimental study was found for the critical angle 
(2=16°). In addition, a series of PIV data has been 
realized. In particular, on the conical diffuser 
2α=16° specially designed for this work. It allows 
the determination of the instantaneous fields’ 
velocity. We have used the data base constructed to 
validate CFD simulations. The accuracy of the PIV 
measurments is about 1% to 2%.  The results are 
obtained from the temporal average (1500 fields).  

3.1. Structures of flows crossing conical 
diffusers 

The iso-values lines of the axial component 
velocity, the iso-values lines of the RMS of the 
axial component velocity and the iso-values lines 
of the Reynolds tensor in the conical diffuser 
(2=16°) for a Reynolds number Re=37000, are 
presented respectively in Figs. 2. a, 3. a and 4. a. 
While Figs. 2.b, 3.b and 4.b show the results in the 
conical diffuser (2=30°).  

The Reynolds tensor is defined as: 

' '
ijR u v                  (9) 

The figures show mainly three different regions in 
the singularity whatever the opening angle 
considered. The first region was observed in the 
approximate of nearly at 1y / R 0.75   from the 

wall in the direction of mean flow. The second 
region corresponds to the zone where the pressure 
gradient is important i.e. at the upper part of 
singularity. The third region is the lower part near 
the wall where the pressure gradient is less. This 
let one deduce that there is a slight dissymmetry of 
the flow. When the conical diffuser’s section 
increases progressively; the turbulence level in the 
singularity increases. Even in the presence of this 
slight dissymmetry, the turbulence level visualized 
in the conical diffuser (2=16°) does not generate 
repetitive and stable vortices. However, when the 
diffuser opening angle is increased twice i.e. 
(2=30°), from 1r / R 0.4  , the iso-values lines 

of the axial velocity component have a strong 
curvature, change directions and generate two 
circulation zones at the upper and lower part of the 
diffuser. To conclude, for turbulent flows, when the 
opening of a symmetrical diffuser exceeds a 
significant angle, an important separation of the 
boundary layer of the wall appears. Generally, it 
induces the formation of a stable recirculation zone 
characterized by negative values of the axial 
velocity component close to the wall (Yang and 
Hou, 1998; Braga and de Lemos, 2004; Mondal et 
al. 2004). In a perfectly axi-symmetric diffuser 
with a great angle (in our case, 2=30° and a 
length of 41mm, a separation alternatively occurs 
in the top and in the bottom sides. It produces 
strong vibrations of the flow. This detection is in 
agreement with the observations of Idel' ick (1969) 
for diffusers having large point angles, going up to 
50 at 60°. The comparison of turbulent flows 
behaviours in the diffusers (2α=16°) and (2α=30°) 
lets deduce that the separation of layers is 
accompanied by the formation of symmetrical 
recirculation zones consisted of repetitive and 
stable contra-rotating swirls when the angle of the 
diffuser becomes important. 

3.2. Velocity profiles of turbulent flows 
crossing conical diffusers 

The unsteady nature of the flow does not allow an 
easy interpretation of the charts presented on the 
preceded section. For more understanding of the 
opening angle effect on the flow structures 
variations, we carried out the velocity profiles at 
different positions along the conical diffusers. This 
choice was governed by a desire to illustrate the 
possible apparition of recirculation zones on the 
diffusers. It allows the localisation of the probable 
positions of existence of such bifurcations. Indeed, 
Fig. 5, 6, 7, 8, 9, 10 and 11 demonstrate the 
velocity axial component profiles along the conical 
diffusers for Re=37000; respectively at the entry of 
the diffusers, then at 0.234, 0.42, 0.598, 0.79, 0.88 
and 0.97 of the conical diffuser length: (a) 
(2=16°); (b) (2=30°). 
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The behaviours of flows crossing conical diffusers 
of opening angles respectively equals to (2=16°) 
and (2=30°) were studied using PIV and POD 
techniques and some criterions for the detection of 
the turbulent flows structures such as the 
instantaneous vorticity  and the 2 criterion. Many 
differences were found in comparing results. In the  

 
Fig. 14. Instantaneous vorticity field  

obtained By POD (11 modes), superimposed 
with the streamlines, in the conical diffuser for 

Re=37000: (a): (2=16°); (b) (2=30°). 

two conical diffusers, the PIV data base illustrate 
that the flow crossing the singularities was fully 
developed and turbulent. The iso-values lines of the 
axial component velocity, the iso-values lines of the 
RMS of the axial component velocity and the iso-
values lines of the Reynolds tensor were presented 
for the two diffusers. They highlighted the strong 
variations of the flow depending on the diffuser 
opening angle. The comparative analysis achieved 
illustrate that the opening angle strongly affect the 
turbulence level of flow crossing the conical 
diffusers and more generally the hydrodynamic 
structures of the flows. In fact, the analysis of the 
velocity profiles evolution along the conical 
diffusers demonstrates a detachment on the near 
vicinity of the wall. Symmetrical recirculation 
zones appear in the upper and lower parts of the 
conical diffuser (2=30°). It consisted of repetitive 
and stable contra-rotating swirls. While the opening 
angle of the diffuser is reduced to approximately 
2=16°, for the minimum Reynolds number 
generally used in agri-food industries for the 

cleaning in place processes, even the slight 
dissymmetry detected does not generate a sufficient 
turbulence level which can be followed by the 
creation of repetitive and stable vortices.  

The instantaneous field of the  2 criterion 
obtained after the post-processing of PIV data on 7 
layers for Re=37000 respectively for the conical 
diffuser (2=16°) and the conical diffuser 
(2=30°) was shown. It illustrates the presence of 
high levels of turbulence and a detachment of the 
boundary layer near the wall with a concrete 
existence of vortex but not necessary repetitive for  
conical diffuser (2=16°).  

The POD technique was used in order to extract 
the coherent flow structures and to filter the 
different Snapshots. The POD decomposition 
allowed the reconstruction of the flow structures 
with limited energy modes. Indeed, the 
instantaneous vorticity field  obtained directly by 
PIV and by POD (11 modes), superimposed with 
the streamlines, in the conical diffusers are 
presented. It allows the visualization of vortices in 
a turbulent flow. The POD results detect the 
presence of 3D effects. 
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