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Abstract

A LMI-based approach is proposed to design a quadratically

stable flux observer for an induction motor. The resulting

observer is a parametrically varying dynamic system that

insures a L2-gain attenuation between the exogenous input

and the flux estimation error of the augmented plant. Its

performance is evaluated and compared with those of the
Verghese observer.

1�Introduction

The induction motor has very appealing properties. Contrary

to the D.C. motor, which is based on mechanical contacts

(brushes and commutator) between rotor and stator, the

induction motor makes use of alternative supply of the stator

windings to set up a rotating magnetic field, inducting

currents in the rotor (closed) windings, hence providing a

torque.

 Consequently, the induction motor has relatively low cost

and very good reliability and ruggedness. It is increasingly

used in industrial applications, for these reasons. The counter-

part is that the induction motor control is more difficult for

two reasons: the model is non linear and some useful physical

variables for feedback, the rotor flux for example, cannot

easily be measured. This has motivated a growing amount of

literature in the last years in the control community, which

find this problem challenging. (Cf. references from [12] to

[22])

The field oriented-control, FOC, ([11] [10]) is a popular

approach as a basis for speed-control of the induction motor.

The FOC makes use the Park's transformation to get a linear

system. The next step consists classically in linear cascade

control. In order to improve the performance of the

regulation, many others methods have also been proposed,

based on feedback linearization ([26] [21] [16]) or passivity

[17]. Sometimes, adaptive schemes are proposed ([22] [20]).

In fact, whatever the control law considered, a good

estimation of the rotor flux is always required.

The complexity of the flux observer design problem directly

relies on the complexity of the model (non-linear of 6th
 Order)

of the system. More over, the ideal observer has to be simple,

high-performance and robust against parametric uncertainties.

Actually, the simplest version is often used. It consists in an

open-loop observer ([10] [15]) which estimates the flux from
the current measurements. The convergence rate of such

observer cannot be tuned because it is imposed by the rotor

time constant.

At least, three alternatives have been studied in order to

design a flux observer with better properties. The first one,

based on the linear control theory  (Luenberger observer), has

been proposed by Verghese [15] and is appreciated [14] for

its simplicity and its proven quadratic stability. The second

one makes use of feedback linearization theory [26] as

Bornard who proposes a high gain observer [12], or sliding

modes control theory as in [13]. Such methods may bring
difficulties to manage the compromise between noise and

parameters sensitivity. Lastly, some authors ([18] [19])

proposed to use an extended Kalman filter to estimate the

flux. Such an approach seems to work well in practice but

with a big amount of computations.

The aim of this paper is to propose a robust flux observer

design for induction drives. By construction, it will be

quadratically stable and will satisfy an L2-gain performance

constraint. It will be found as a linear parameter-varying,

LPV, dynamic system, where the varying-parameter is the
motor rotor speed, by using a linear matrix inequality, LMI,

approach ([7] [8] [9] [1] [2] [5]). The study is organized as

follows: a standard gain scheduling problem and its solution

in term of LMI constraint are reviewed in the second section.

In the third section, an appropriate model of the system for

the problem considered is given. The fourth section reports

the observer design (following the second section) and

analysis comparatively to the Verghese Observer.



2�L2gain�LPV�Control

We consider, in the following, parameter dependant

continuous-time system defined by the equation (1).
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Where x is the state vector, u the control input, w the

disturbance input, y the measured output and z the regulated

output. δ(t)=[δ1,…,δr]
t is a vector of time-varying parameters

assumed to be measured in to real-time and belonging to a

polytopic set PΔ defined by its vertices 
v1

,, δδ K . Besides the

matrices A(.), B(.), C(.), D(.) have a rational dependency on

each parameter.

It is well known ([24][25]) that a linear fractional

representation, LFR, exists for such a system. In other terms,

there exists constant matrices .... B,B A,
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Where )I*)t(,,I*)t((diag:)t(
nrr1n1

δδ=Δ L .

Denoting by P the time domain operator corresponding to the

transfer matrix relying input (w, u) to output (z, y) and by Δ
the operator defined by p=Δ.q, we obtain the LFR drawn in
figure (1).
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Figure�1: LFR for LPV system

This kind of representation is interesting in that it splits the

standard plant into two parts: a linear model (P) and a time

varying operator (Δ).

A parameter dependent dynamic feedback of the form

u=Fu(K,Δ)*y, which stabilizes the system (1) and ensures for

the close-loop transfer from w to z a L2-gain less than γ can
be found by solving an appropriate LMI [23]. The problem of
finding such a feedback is said to be the standard one for

LPV controller design. After recast, the problem of the flux
observer design may be embedded in the standard problem

described above with an additional simplification. The matrix

Dqp used in the equation (2) is in that case equal to zero.

Consequently, the LFR is necessary well posed and reduces

to affine or polytopic systems. We can therefore use the

following result of [1] [7].

Assumption

1- B2, C2, D12, D21: are time invariant.

2- (A(Δ),B2) stabilizable and  (A(Δ),C2) detectable.
3- the vertices of the polytopic system are given by (3).
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The first assumption allows a finite number of constraints in

the following theorem. The second assumption is a necessary

and sufficient condition to allow the quadratic stabilization of

the polytopic LPV plant by an output feedback LPV

controller.

Theorem [1] [7]

Let NRi and NSi be the null space of [ ]t

i12

t

i2
DB M and [ ]

i21i2
DC M .

An output LPV feedback controller insuring a γ level
performances, under quadratic stability constraint, exists if

and only if exist two symmetric matrices R and S, semi-
definite positive, solving the following LMI:
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Then, we need to construct Pcl as follows:

� Find full rank matrix knN,M ×ℜ∈ such that RSIMN
T −= .

�
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Note that Pcl is a Lyapunov matrix proving the quadratic

stability of the closed-loop system.
A polytopic feedback is then found by computing each

controller vertex, Cvi,, as a feasible solution of the LMI (6).
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Where (
clicliclicli

D,C,B,A ) are the closed-loop system matrices.

Remark:� The LMI given by (6) is in fact the LTV case

extension of the well known bounded real lemma  ([1] [4] [7])

for the. Linear time-invariant systems, LTI.� In the LTI case

the previous theorem provides the suboptimal H∞ feedback
[5] problem.

3�Model�of�the�induction�motor

Let us consider a balanced three-phase sinusoidal system

described by the variable (xa xb xc xo), which can represent
currents as well as supply voltages or magnetic fluxes. With

this assumption, the zero sequence component xo is null while

the others are given by:
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Hence, the Concordia transformation (T32) allows to simplify

the equations of the induction motor by writing them in the

(α,β) reference frame.
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Therefore, we have the following expression:
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The application of those transformations to rotor and stator

electric equations leads to the dynamical electric model (10)

of the induction motor (see [10] [11] for details). The system

(10) is an LPV-plant if one considers the mechanical speed,

Ω, as an external time-varying parameter.
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Where 
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Vs: Stator voltage Is: Stator current

Φr: Rotor flux Ω: Rotor mechanical speed
Rr, Rs: Rotor and stator resistance
Lr, Ls: Rotor and stator inductance

Msr:  Mutual Inductance p: Number of poles pairs

We also denote: |Φr|=
2

r

2

r βα Φ+Φ (10)

The rotor-speed dynamic is given by:
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Remark: The global model is of sixth order including the

rotor speed and position as state variables.

4�LPV�observer�synthesis

In order to design a flux observer for the induction motor, we

proceed following the line of section two and make use of the

algorithms provided the Matlab® LMI Control Toolbox [3].

Firstly, a LFR of the standard plant is found with

Δ(t)=Ω(t)*In (see equation (1) and (2)). Secondly, the problem
of flux estimation is encapsulated as a suboptimal L2-gain

problem as described in the theorem exposed in the second

section. Let us consider the standard scheme of the figure 2.
For the flux observer design problem, the regulated output are

the fluxes estimation error, the measured outputs are the stator

currents and the supply voltage while the control inputs are

the estimated flux and the disturbance inputs are the supply

voltage together with external noises. W(s) is a function

weighting transfer allowing tuning the observer bandwidth.

An LFR of the standard system can be easily found.

Therefore, the observer is the dynamic feedback of the same

order and LPV-structure than the standard system derived

following the lines of the theorem 1 in the section two.
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Figure�2: Standard System with Feedback

The design parameters, g and wb, are chosen to fixe the

observer noise sensitivity and bandwidth. The choice of such

a simple criterion to tackle with the problem of flux observer

design may be discussed. In fact, it can be improve by taking

into account more precisely the parameter uncertainties and

disturbance of other origin. Assuming a good identification,

the main source of uncertainty is the rotor resistance, which

depend on the temperature into the motor. Therefore, it is
possible to introduce additional disturbance inputs and/or

regulated output in order to reduce the sensitivity of the

design to that parameter. It is also possible to take into

account the distortion introduced by the inverter switching

between the desired supply voltage and the real ones.

In practice, we found that the good robustness properties of

the original design are not significantly improved using a

more complicated criterion. Besides, it is not imperative to

introduce the supply voltage distortion as a high frequency

noise on the voltage input of the standard scheme, the motor

behaving itself as a low pass filter.

Finally, the result obtained from the scheme of the figure 2

and the corresponding criterion are reported next and

compared with the well appreciated Verghese observer [15].

The characteristics of the induction motors used for the

simulation are the following:

�  Electrical parameters:

Rs=4.35 Ω
Rr=2.48 Ω
Lr=Msr=0.176 H

Ls=0.2 H

� Mechanical parameters:
J=0.0054 kg.m²

p=2

Fv=0.0016 N.m.s.rd-1

Besides the LMI-observer design parameters have been tuned

to: g=5e-3 and wb=2000 rd/s. Those values allow to fixe the

observer bandwidth to 1800 rd/s and the observer noise

sensitivity to –120db (in high frequency).

The root locus of the LMI and Verghese observers
parameterized depending on the rotor speed is drawn in the

figure (3). It shows a different strategy in the closed-loop pole

placement. The root locus also shows that the LMI-observer

is better damped than the Verghese observer.

Figure�3: Roots locus

In order to appreciate the convergence rate of the estimated

flux to the true value, a first test (figure 4a and 4b) has been

performed using an open-loop scheme. The motor is supplied
with a three phases sinusoidal voltage of 50 Hz and it is

disturbed by a constant load torque. After the starting phase,

the flux observer runs from null initial conditions. Both

observers have comparable performances in terms of damping

and time response. In less than 0,2 seconds, the flux

estimation error converge to zero. Despite of the difficulty of

the test performed (nominal speed) the response is sufficiently

well damped.
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Figure�4a: Time Response : 
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A second test is performed in order to appreciate the filtering

and robustness property of those observers. The simulation is

performed with white noise on current measurement and a
variation of 50% on the rotor resistance Rr. The figure (5)

show that the noise is better filtered in the LMI-observer case.

It is also shown that the LMI-observer is the most robust in

term of static estimation error for the flux modulus.
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Figure�5b: Time Response :
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Figure�5b: Time Response :
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Others simulations have been performed to show the load
torque influence in presence of rotor-resistance uncertainties.

For both observers, the estimation error is non zero.

At last, the two observers have been tested for a particular

speed profile of the motor (Cf. figure 6). For that purpose, a

field-oriented controller based on classical  (open loop) flux

observer is used for speed control. So, the LMI�and Verghese

observers are not used for feedback. Taking into account the

very dilated flux scale, one can see the good performances

both observers. The larger deviation (which remains very

small) happened as expected when crossing the null speed.

FluxFlux

Speed

Figure�6: Speed Regulation

5�Conclusions

After noticing that the induction motor model may have a
linear fractional representation in a particular referential, a

new approach, LMI-based, has been proposed to design a

quadratically stable flux observer. The observer is a

parametrically varying dynamic system, which insures L 2-

gain attenuation between the exogenous input and the flux

estimation error of the standard system. Its performances have

been evaluated and compared with those of Verghese

observer. At the present we develop a more elaborate criterion

to still improve the performance and the robustness against

resistances variation. The next step consists to rigorously

discretize this LPV observer in order to implement it with
minimal amount of computation.

Further works may also include the reduction of the

conservatism of the proposed method by taking into account

the limited speed variation rate capability of the motor.
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7�Appendix

The LFR of the standard system in respect to (2) and to the

induction motor considerate:

Δ(t):=Ω(t)*I2 and 
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