
HAL Id: hal-01317344
https://imt-atlantique.hal.science/hal-01317344

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Low Parametric Closed-Loop Sensitivity Realizations
using Fixed-Point and Floating-Point Arithmetic

Thibault Hilaire, Philippe Chevrel, James F Whidborne

To cite this version:
Thibault Hilaire, Philippe Chevrel, James F Whidborne. Low Parametric Closed-Loop Sensitivity
Realizations using Fixed-Point and Floating-Point Arithmetic. European Control Conference, Jul
2007, Kos, Greece. pp.6, �10.23919/ECC.2007.7068839�. �hal-01317344�

https://imt-atlantique.hal.science/hal-01317344
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Low Parametric Closed-Loop Sensitivity Realizations using Fixed-Point

and Floating-Point Arithmetic

T. Hilaire∗, P. Chevrel†, and J.F. Whidborne‡,
∗IRISA UMR CNRS 6074, 6 rue Kérampont

22305 LANNION, FRANCE
†IRCCyN, UMR CNRS 6597, 1 rue de la Noë

44321 NANTES, FRANCE
‡Department of Aerospace Science, Cranfield University

Bedfordshire MK43 0AL, U.K.

Abstract— The Specialized Implicit Form provides a general
framework for the analysis and design of digital controller
implementations with minimal finite wordlength effects. This
paper proposes a measure of the closed-loop transfer function
sensitivity to finite wordlength effects that is generalized for
both fixed-point and floating-point arithmetic and can be used
with the Specialized Implicit Form to analyze the effects of
quantization and rounding on the parameters of a digital
controller implementation. The measure is computationally
tractable and hence amenable to solving the problem of
minimizing the parametric sensitivity FWL effect. Furthermore,
the sensitivity to the rounding of each individual parameter can
be easily obtained. The use of the measure is illustrated with
examples.

Index Terms— Finite-wordlength effects, Implementation,
Fixed-point arithmetic, Floating-point arithmetic, Controller
realization

I. INTRODUCTION

When control systems are implemented in digital hard-
ware, rounding and quantization occurs on the variables and
constants in the controller resulting from the finite-precision
nature of the number storage in the computing device. This
arises because a number must be represented with a finite
wordlength (FWL). There are two main effects of this finite-
precision (often known as the FWL effects). The first is the
addition of noise into the system resulting from the rounding
of variables before and after each arithmetic operation - the
“round-off noise”. The second is the degradation in the per-
formance and/or the stability resulting from quantization of
the controller coefficients/parameters, known as “parametric
sensitivity”, about which this paper is concerned. For most
low-order controllers, the FWL effects are insignificant, but
for higher-order controllers, particularly when fast sampling
is used, the FWL effects can become significant. However,
it is well-known that the FWL effects are dependent upon
the controller realization, hence there has been a great deal
of work in determining realizations that minimize the FWL
effects in some sense, e.g. [1], [2], [3]. It is also well-
known that the FWL effects are dependent on the choice
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of dynamic operator. The δ-operator, for example, generally
has much better numerical properties than the usual delay
operator, q, for control systems with fast sampling, e.g. [4].
Unsurprisingly, the FWL effects are also dependent upon the
choice of arithmetic, either fixed-point or floating-point.

The problem of addressing the optimal realization for
minimal FWL effects is usually addressed in the state space,
e.g. [5], [1], [3]. Briefly, if the controller is K(s) = C(σI −
A)−1B + D where σ is usually the transform of the δ or
q-operator, the problem is to search over the set
{

CT (σI − T−1AT )−1TB + D : T a non-singular matrix
}

to find a T and hence controller realization that is insensitive
to FWL effects. The limitation of this approach is that
(i) there are many realizations that cannot be expressed in
standard state space form and (ii) the search is confined
to a single operator. The δ-operator is more complex to
implement than the q-operator, so in some circumstances,
it may be best to have a mix of operators. These limitations
may be overcome by use of the Specialized Implicit Form

for the controller [6], [7], [8].
This paper proposes a measure of the sensitivity of the

closed-loop transfer function to the controller parameter
rounding that is based on a measure proposed by [1] and
is suitable for use with the specialized implicit form. The
measure is generalized for either fixed or floating-point
arithmetic and can be easily computed. In the next section,
the specialized implicit form is introduced. In section III,
the quantization of the controller coefficients is discussed,
and in the following section, the sensitivity measure is
proposed and the means of its evaluation provided. In section
V, the problem of determining a realization with minimal
parametric sensitivity is posed and some examples provided.

II. A UNIFYING FRAMEWORK

A. The Specialized Implicit Form

Many controller forms, such as lattice filters and δ-
operator controllers, use intermediate variables, and hence
cannot be expressed in the traditional state-space form.
The Specialized Implicit Form allows a description, in a
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single equation, of almost any implementation. Furthermore,
it provides an explicit description of the parametrization,
and allows the analysis of the FWL effects, but is still a
macroscopic description. The description takes the form of
an implicit state-space system [9] and is given by

⎛

⎝

J 0 0
−K In 0
−L 0 Ip

⎞

⎠

⎛

⎝

T (k + 1)
X(k + 1)

Y (k)

⎞

⎠=

⎛

⎝

0 M N

0 P Q

0 R S

⎞

⎠

⎛

⎝

T (k)
X(k)
U(k)

⎞

⎠

(1)
where

• J ∈ R
l×l, K ∈ R

n×l, L ∈ R
p×l, M ∈ R

l×n, N ∈
R

l×m, P ∈ R
n×n, Q ∈ R

n×m, R ∈ R
p×n, S ∈ R

p×m,
T (k) ∈ R

l, X(k) ∈ R
n, U(k) ∈ R

m and Y (k) ∈ R
p,

• matrix J is lower triangular with 1’s on the main
diagonal.

• T (k+1) is the intermediate variable in the calculations
of step k (the column of 0’s in the second matrix shows
that T (k) is not used for the calculation at step k – this
characterizes the concept of an intermediate variable),

• X(k + 1) is the stored state-vector (X(k) is effectively
stored from one step to the next, in order to compute
X(k + 1) at step k).

T (k+1) and X(k+1) form the descriptor-vector: X(k+1) is
stored from one step to the next, while T (k+1) is computed
and used within one time step.

It is implicitly assumed throughout the paper that the
computations associated with the realization (1) are executed
in row order giving the following algorithm:

[i] JT (k + 1) ← MX(k) + NU(k)

[ii] X(k + 1) ← KT (k + 1) + PX(k) + QU(k)

[iii] Y (k) ← LT (k + 1) + RX(k) + SU(k)

Note that in practice, steps [ii] and [iii] could be exchanged
to reduce the computational delay. Also note that because
the computations are executed in row order and J is lower
triangular with 1’s on the main diagonal, there is no need to
compute J−1.

Equation (1) is equivalent in infinite precision to the
classical state-space form

⎛

⎝

T (k + 1)
X(k + 1)

Y (k)

⎞

⎠ =

⎛

⎝

0 J−1M J−1N

0 AZ BZ

0 CZ DZ

⎞

⎠

⎛

⎝

T (k)
X(k)
U(k)

⎞

⎠ (2)

with AZ ∈ R
n×n, BZ ∈ R

n×m, CZ ∈ R
p×n and DZ ∈

R
p×m where

AZ = KJ−1M + P, BZ = KJ−1N + Q, (3)

CZ = LJ−1M + R, DZ = LJ−1N + S. (4)

Note that (2) corresponds to a different parametrization than
(1). The system transfer function is given by

H(z) = CZ(zIn − AZ)−1BZ + DZ . (5)

B. Definitions

To complete the framework, the following definitions are
required. For further details, see [8], [10].

Definition 1 A realization, R, is defined by the specific set

of matrices J , K, L, M , N , P , Q, R and S used to describe

a realization with the implicit form of (1) :

R :� (J, K, L, M, N, P, Q, R, S). (6)

Remark 1 R can also be defined by the matrix Z ∈
R

(l+n+p)×(l+n+m)

Z �

⎛

⎝

−J M N

K P Q

L R S

⎞

⎠ (7)

and the dimensions l, m, n and p, so R could be defined by

R := (Z, l, m, n, p).

Definition 2 RH denotes the set of realizations with transfer

function H . These realizations are said to be equivalent.

In order to encompass realizations with some special
structure (q-operator state-space, δ-operator state-space, di-
rect form, cascade, lattice filters, etc.), we define a set of
realizations that possess a particular structure.

Definition 3 A structuration S is a set of realizations

having a common structure: some coefficients or some di-

mensions are fixed a priori.

Some examples of common structurations are given in the
next section.

Definition 4 RS
H is the set of equivalent structured realiza-

tions. Realizations from RS
H are structured according to S

and have a transfer function H . Hence

R
S

H � RH ∩ S . (8)

Some coefficients of Z are, for example, always set to
unity or zero, and are hence not subject to rounding. These
are not ‘significant coefficients’ and hence are not included
in the parametrization.

Definition 5 A parametrization of a realization R is the set

of coefficients of Z that are significant for the realization.

C. Some examples

The following specialized implicit form describes the
realization of a state-space controller using the δ-operator
⎛

⎝

In 0 0
−∆In In 0

0 0 Ip

⎞

⎠

⎛

⎝

T (k + 1)
X(k + 1)

Y (k)

⎞

⎠=

⎛

⎝

0 Aδ Bδ

0 In 0
0 Cδ Dδ

⎞

⎠

⎛

⎝

T (k)
X(k)
U(k)

⎞

⎠

So, the δ-structuration Sδ is formally defined by

Sδ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R := (In,∆In, 0, Aδ, Bδ, In, 0, Cδ, Dδ)
∀m ∈ N, n ∈ N, p ∈ N

∀∆ ∈ R
+, Aδ ∈ R

n×n, Bδ ∈ R
n×m

∀Cδ ∈ R
p×n, Dδ ∈ R

p×m

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9)
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The cascade form is a common realization for filter
implementation. It generally has good FWL properties com-
pared to the direct forms. For cascade form, the filter is
decomposed into a number of lower order (usually first and
second-order) transfer function blocks connected in series.
For the next example, we consider two standard q-operator
filter blocks connected in series as shown in fig. 1.

U1 Y2T = Y1 = U2
R1

R2

Fig. 1. Cascade form

If the two state-space realizations R1 and R2 are defined
by (A1, B1, C1, D1) and (A2, B2, C2, D2), then cascading
R1 with R2 leads to the following realization

Z =

⎛

⎜

⎝

−I C1 0 D1

0 A1 0 B1

B2 0 A2 0
D2 0 C2 0

⎞

⎟

⎠
(10)

from which definition of the structuration S immediately
follows. The output of R1 is computed in the intermediate
variable, and used as the input of R2.

The main point is that if we consider the equivalent state-
space realization, with parameters

A =

(

A1 0
B2C1 A2

)

, B =

(

B1

B2D1

)

,

C =
(

D2C1 C2

)

, D = D2D1,

(11)

the parametrization is not the one used in the computations.
For a given form, it is generally straightforward to define

the structuration. A number of other examples are given in
[8] and [6].

III. COEFFICIENT QUANTIZATION

A coefficient’s quantization depends both on their value
and their representation.

Firstly if the value of a coefficient is such that it will
be quantized without error, then that parameter makes no
contribution to the overall coefficient sensitivity. Hence we
introduce weighting matrices WJ to WS (and also WZ)
respectively associated with matrices J to S of a realization,
such that

(WX)i,j �

{

0 if Xi,j is exactly implemented,

1 otherwise.
(12)

Secondly, different representation schemes may be consid-
ered. Here we consider both fixed-point and floating-point
representations of coefficients expressed using β bits.

A fixed-point coefficient x is represented by
(−1)s.N.2−βf , where s ∈ {0, 1}, N is an integer
coded with βg bits and βf an integer (not stored in the
representation) such that βg + βf + 1 = β. The quantized
x† of x is such that

∣

∣x − x†
∣

∣ < 2−(βf +1). (13)

A floating-point coefficient is represented by (−1)s.w.2e

where w ∈ [0, 1[ (or w ∈ [0.5, 1[ for a normalized floating-
point representation) and e is an integer coded with βe bits1

(βe + βw + 1 = β). The quantized x† of x is, in this case,
such that

∣

∣x − x†
∣

∣ < x.2−(βw+1). (14)

The choice of βf and e can be unique for each coefficient
(e = ⌈log2 |x|⌉ and βf = β − 1 − ⌈log2 |x|⌉, where ⌈·⌉ is
the ceiling operator). Alternatively, βf and e are defined for
a group of coefficients (in order to reduce the required bit-
shifts and the subsequent computational cost). This defines
the block-fixed-point and block-floating-point schemes. Fol-
lowing [11], we introduce the generalized dynamic range bit
βr (βr = βg or βe) and the precision bit length βp (βp = βf

or βw).
Usually, the blocks used in block-representation corre-

spond to the matrices J to S, but there is no necessity for
this, and blocks can be chosen at will. To define the blocks
of a realization R := (Z, l,m, n, p), we introduce the matrix
ηZ such that

(ηZ)i,j �

{

the largest absolute value of
the block in which Zi,j resides.

(15)

This allows a completely general definition of the blocks.
Thus there could be just a single unique block, or every block
could consist of only one coefficient. For example, denoting
Ea,b ∈ R

a×b as a matrix of 1s and

‖X‖max � max
i,j

|Xi,j | , (16)

then using a block-representation corresponding to the ma-
trices J to S gives

ηZ =

⎛

⎝

‖J‖max El,l ‖M‖max El,n ‖N‖max El,m

‖K‖max En,l ‖P‖max En,n ‖Q‖max En,m

‖L‖max Ep,l ‖R‖max Ep,n ‖S‖max Ep,m

⎞

⎠ .

With a single unique block for Z we get

ηZ = ‖Z‖max El+n+p,l+n+m, (17)

and for one block per coefficient we get

(ηZ)i,j = |Zi,j | . (18)

Proposition 1 During the quantization process, Z is per-

turbed to Z + rZ × ∆ where

rZ �

{

WZ for fixed-point representation,

2ηZ × WZ for floating-point representation,

(19)
∆ is a matrix dependant on the βp precision bit length, and

× denotes the Schur product. If βpi,j
is the precision bit-

length of Zi,j , then

|∆i,j | < 2−(βpi,j
+1). (20)

1The difference with fixed-point is that e is coded with βe bits and can
changed. With fixed-point, βf is fixed and implicit.
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Proof: The proof comes from the quantized error
expressed in (13) and (14).

Remark 2 With this formalism for the different representa-

tion schemes, note that the choice of the scale parameter (e

or βf ) is defined for each coefficient (ei,j =
⌈

log2

∣

∣ηZi,j

∣

∣

⌉

and βf i,j
= β−1−

⌈

log2

∣

∣ηZi,j

∣

∣

⌉

) and that it is also possible

to define the minimum bit length β to code each coefficient

without overflow or underflow [8].

IV. CLOSED-LOOP SENSITIVITY MEASURES

In order to determine the optimal realization, some mea-
sure of the closed-loop sensitivity to parametric perturbations
is required. A fair number of these have been proposed over
the years. Ideally, the chosen measure should be computa-
tionally tractable but reasonably representative of the actual
perturbations that occur in implementation. Probabilistic
measures have been proposed, e.g. [12], as well as small-
gain measures [13]. A number of measures of the closed-loop
pole sensitivity have been proposed [14], [3], [15], [16]. Here
though, we use a closed-loop transfer function sensitivity
measure which extends that originally proposed by [1].

A. Problem statement

P

m1

m2

C

p1

p2

W (k) Z(k)

U(k) Y (k)

S

Fig. 2. Closed-loop system considered

Consider a plant, P , with controller, C, in the standard
form shown in fig. 2, where W (k) ∈ R

p1 and Z(k) ∈ R
m1

are the exogenous input and output respectively and U(k) ∈
R

p2 and Y (k) ∈ R
m2 are the plant control and measured

signals respectively.
The plant P is defined by

P :=

⎛

⎝

A B1 B2

C1 D11 D12

C2 D21 0

⎞

⎠ (21)

where A ∈ R
nP×nP , B1 ∈ R

nP×p1 , B2 ∈ R
nP×p2 , C1 ∈

R
m1×nP , C2 ∈ R

m2×nP , D11 ∈ R
m1×p1 , D12 ∈ R

m1×p2 ,
D21 ∈ R

m2×p1 and D22 ∈ R
m2×p2 is assumed to be zero

only in order to simplify the expressions. The controller is
defined by a realization C := (Z, l, n,m2, p2) with transfer
function CZ(zI − AZ)−1BZ + DZ .

The closed-loop system S is then given by

S = Fl(P, C) :=

(

Ā B̄

C̄ D̄

)

(22)

where Fl(·, ·) is the well-known lower fractional trans-
form operation [17] and where Ā ∈ R

nP+n×nP+n, B̄ ∈
R

nP+n×p1 , C̄ ∈ R
m1×nP+n and D̄ ∈ R

m1×p1 such that

Ā =

(

A + B2DZC2 B2CZ

BZC2 AZ

)

(23)

B̄ =

(

B1 + B2DZD21

BZD21

)

(24)

C̄ =
(

C1 + D12DZC2 D12CZ

)

(25)

D̄ = D11 + D12DZD21 (26)

The closed-loop transfer function is

H̄ : z → C̄
(

zI − Ā
)−1

B̄ + D̄ (27)

B. Transfer function sensitivity

In order to evaluate how much the digital approximation
of the controller’s coefficients (due to FWL implementation)
affects the closed-loop transfer function, the transfer function
sensitivity ∂H̄

∂Z
can be used.

Let H̄† � H̄
∣

∣

Z+rZ×∆
denote the closed-loop transfer

function H̄ perturbed by the quantization process (Z is
perturbed in Z + rZ ×∆ according to proposition 1). Then,
for the Single Input Single Output (SISO) case, ∀z ∈ C

H̄†(z)−H̄(z) =
∑

i,j

∆i,j

∂H̄†(z)

∂∆

∣

∣

∣

∣

∆=0

+o (‖∆‖max) (28)

and
∥

∥H̄† − H̄
∥

∥

2
� ‖∆‖max

∥

∥

∥

∥

∂H̄†

∂∆

∣

∣

∣

∣

∆=0

∥

∥

∥

∥

2

(29)

where ‖·‖2 is the L2-norm. It is easy to see that

∂H̄†

∂∆

∣

∣

∣

∣

∆=0

=
∂H̄

∂Z
× rZ (30)

and so (29) leads to the following transfer function sensitivity
measure:

Definition 6 Let consider a realization R := (Z, l,m, n, p)
with representation matrix rZ . The closed-loop transfer func-

tion sensitivity, with respect to all the non-trivial coefficients

of R is defined in the SISO case by

M̄W
L2

�

∥

∥

∥

∥

∂H̄

∂Z
× rZ

∥

∥

∥

∥

2

2

(31)

Remark 3 This measure must be linked to the open-loop

transfer function sensitivity
∥

∥

∂H
∂Z

× rZ

∥

∥

2

2
previously defined

in [7], [18], [10] that derives from Gevers’ definition [1].

Remark 4 From (31) and (29), it is possible to ensure

that the closed-loop transfer function perturbation is smaller

than a certain constant in an L2-norm sense. It is also

possible to include a frequency weighting to emphasize

certain frequency ranges. Furthermore, it is also possible to

use an H∞-norm to ensure that the closed-loop degradation

is constrained over a given frequency range.
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This measure can be extended to the Multiple Input
Multiple Output (MIMO) case. However, it is also useful
to be able to consider the contribution of each coefficient
to the overall sensitivity. The closed-loop transfer function

sensitivity matrix, denoted by δH̄
δZ

, is the matrix of the L2-
norm of the sensitivity of the transfer function H̄ with respect
to each coefficient Zi,j . It is defined by

(

δH̄

δZ

)

i,j

�

∥

∥

∥

∥

∂H̄

∂Zi,j

∥

∥

∥

∥

2

(32)

and allows the evaluation of the overall impact of each
coefficient. It can be used to evaluate the overall sensitivity.
From the properties of L2-norms, we have

∥

∥

∥

∥

δH̄

δZ

∥

∥

∥

∥

F

=

∥

∥

∥

∥

∂H̄

∂Z

∥

∥

∥

∥

2

(33)

where ‖·‖F is the Frobenius norm.
Definition 6 can now be extended to the general case

(MIMO and SISO) :

Definition 7 The closed-loop transfer function sensitivity

measure is defined by

M̄W
L2

�

∥

∥

∥

∥

δH̄

δZ
× rZ

∥

∥

∥

∥

2

F

(34)

The transfer function sensitivity ∂H̄
∂Z

is given by the
following proposition

Proposition 2

∂H̄

∂Z
=

[

C̄
(

zI − Ā
)−1

M̄1 + M̄2

]

�
[

N̄1

(

zI − Ā
)−1

B̄ + N̄2

]

(35)

where � is an operator defined by

A � B � Vec(A).
[

Vec
(

B⊤
)]⊤

, (36)

Vec(·) is the classical operator that vectorizes a matrix, and

M̄1 =

(

B2LJ−1 0 B2

KJ−1 In 0

)

(37)

N̄1 =

⎛

⎝

J−1NC2 J−1M

0 In

C2 0

⎞

⎠ (38)

M̄2 =
(

D12LJ−1 0 D12

)

(39)

N̄2 =

⎛

⎝

J−1ND21

0
D21

⎞

⎠ (40)

Proof: The proof is based on the following lemma :

Lemma 1 Let X be a matrix in R
p×l and G, H be two

transfer function with values respectively in C
m×p and C

l×n.

G and H are supposed to be independent w.r.t. X . Then

∂(GXH)

∂X
= G � H (41)

∂(GX−1H)

∂X
= (GX−1) � (X−1H) (42)

The proofs can be found in [8].

V. OPTIMAL DESIGN

Since the closed-loop sensitivity measure depends on the
realization chosen to numerically realize the controller, it is
of interest to find, among the equivalent realizations, those
with good closed-loop FWL properties.

A. Equivalent realizations

In order to exploit the potential offered by the specialized
implicit form in improving implementations, it is necessary
to describe sets of equivalent system realizations. In [10],
the Inclusion Principle introduced by Šiljak and Ikeda [19],
[20] in the context of decentralized control, is extended
to the Specialized Implicit Form in order to characterize
equivalent classes of realizations. Although this extension
gives the formal description of equivalent classes, it is of
practical interest to consider only realizations with the same
dimensions, where transformation from one realization to
another is only a similarity transformation.

Proposition 3 Consider a realization R0 :=
(Z0, l, m, n, p). All realizations R := (Z, l,m, n, p)
such that

Z =

⎛

⎝

Y
U−1

Ip

⎞

⎠Z0

⎛

⎝

W
U

Im

⎞

⎠ (43)

with U ∈ R
n×n, Y ∈ R

l×l and W ∈ R
l×l non-singular, are

equivalent.

Remark 5 Given a realization Z0 in the cascade form of

(10), it is possible to characterize a subset of similarity

transformation that preserves the cascade structure. The

equivalent realizations with this particular structure are

given by the particular similarity transform (specialization

of eq. (43))

Z =

⎛

⎜

⎜

⎜

⎝

Y−1

U−1

W−1

Ip

⎞

⎟

⎟

⎟

⎠

Z0

⎛

⎜

⎝

Y
U

W
Im

⎞

⎟

⎠
(44)

In the SISO case, the transformation matrix Y is only a

scale factor between the first and the second stages of the

realization, that can be considered to bound coefficients into

acceptable limits. Note that in the MIMO case, there is an

extra degree freedom.

B. Optimal realizations problem

The problem of determining the realization that is best in
some sense can be posed as follows:

Problem 1 (Optimal realization problem) Consider a

transfer function H and a sensitivity measure J . The

optimal design problem is to find the best realization Ropt

with transfer function H according to the criteria J , that is

Ropt = arg min
R∈RH

J (R). (45)
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Due to the size of RH , this problem generally cannot be
solved practically. Hence the following problem is introduced
to restrict the search to some particular structuration, each
one is searched over using proposition 3.

Problem 2 (Optimal structured realization problem)

Consider some structurations (Si)1�i�N . The problem to

find the optimal structured realization RS
opt is

RS

opt = min
1�i�N

⎛

⎝arg min
R∈R

Si
H

J (R)

⎞

⎠ . (46)

Since the measure J could be non-smooth and/or non-
convex, the Adaptive Simulated Annealing (ASA) [21], [22]
method has been chosen to solve Problem 2. This method
has worked well for other optimal realization problems [15].

C. Example

The first numerical example, used here to evaluate the
closed-loop sensitivity under various parametrizations, is
a SISO fluid power control system studied in [23], [13].
The discrete-time (sampled at 2 kHz) plant P is given by
(Ap, Bp, Cp) in (48), and transformed to the standard form.

The initial realization R0 := (Z0, 0, 4, 1, 1) of the con-
troller C is given in the controllable canonical form in
equation (49). It is important to note that the coefficients
are given with only 4 digits, but, due to the sensitivity of
this example, this could be not sufficient to define correctly
the system. Parameters that may be approximated by the
quantization process required for implementation are shown
in bold font, and the weighting matrix is built accordingly.

The following realizations are considered :

Z0: Direct Form II : it corresponds to the canonical form
Z1: optimal (according to M̄W

L2
) classical state-space real-

ization
Z2: Direct Form II with δ-operator (∆ = 2−5)
Z3: optimal δ-realization

Each realization, and its sensitivity matrix δH̃
δZ

, is presented
in equations (49) to (52).
The values of the sensitivity measures for the various real-
izations are given in Table I. Only the fixed-point format,
with block-representation corresponding to the matrices J to
S, is considered here.

The results obtained are consistent with existing results
on open-loop sensitivity – it is interesting to note that
realization Z1 has a greater sensitivity than Z2, which shows
the extremely good numerical properties of the δ-operator.

The second numerical example is an active control of
longitudinal vehicle oscillations studied in [24]. One signif-
icant aspect of vehicle driveability is the attenuation of the
first torsional mode (resonance in the elastic parts) which
produces unpleasant (0 to 10 Hz) longitudinal oscillations of
the vehicle, known as shuffle. They can be reduced by means
of a controller acting on the engine torque.

The powertrain was modeled in continuous-time form, and
a continuous-time H∞ optimal controller was designed [24].

TABLE I

EXAMPLE1 : CLOSED-LOOP SENSITIVITIES AND COMPUTATIONAL COST

FOR DIFFERENT REALIZATIONS

realization M̄
W

L2
Nb. operations

Z0 1.102e+17 8 + 9×

Z1 1.334e+6 20 + 25×

Z2 2.507e+4 12 + 13×

Z3 33.765 24 + 29×

TABLE II

EXAMPLE2 : CLOSED-LOOP SENSITIVITIES AND COMPUTATIONAL COST

realization M̄
W

L2
Nb. operations

direct form II 6.802e+21 20 + 21×

M̄W
L2

-optimal state-space 6.328e+4 110 + 121×

optimal Observer-State-Feedback 8.441e+4 121 + 131×

The discretized model P (z) is given by equations (53) and
(54), and a discrete-time realization of the controller is given
by (54) and (55) – it corresponds to an internally balanced
realization.

The different forms studied here are :

• direct form II
• M̄W

L2
-optimal state-space

• Observer-State-Feedback

The Observer-State-Feedback form allows an enrichment of
the observer model with a physical meaning but also because
these states estimate the states of the physical system. Thus it
improves the readability of the signals, and the initialization
of the controller states is based on the physical states of the
system. The Observer-State-Feedback form is given by
{

X̂k+1 = ApX̂k + BpUk + Kf (Yk − CpX̂k)

Uk = −KcX̂k + Q(Yk − CX̂k)
(47)

and can be written in the Specialized Implicit Form according
to equation (56).

The transformation from the state-space form to the
Observer-State-Feedback form requires the solution of a
generalized Riccati equation [25]. The controller poles must
be classified in three categories, which are the observation
gain, the filter gain and the Youla parameter (static here).
This repartition (according to some rules [18]) determines
the parameters Kf , Kc and Q. It is possible to numerically
implement equation (47) in various ways, depending on the
choice of the partition of the poles. Here, with 20 poles, there
exist 184756 partitions, but only 120 are actually possible.
The optimal realization is chosen from these realizations.

Table II shows the different sensitivity values. Note that
the Observer-State-Feedback form is not significantly more
sensitive than the state-space form, and with only a small
increase in the number of arithmetic operations.

From Tables I and II it is clear that the optimal realizations,
which are fully parametrized and non-sparse, have a higher
computational cost. This motivates the search for optimal
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sparse realizations [1]. Interestingly, the additional compu-
tational cost of the δ-realizations is small compared to the
very large decrease in sensitivities. This supports the view
that δ-realizations are generally superior [4].

VI. CONCLUSIONS

The Specialized Implicit Form provides a general frame-
work for the analysis and design of digital controller im-
plementations with minimal finite wordlength effects. This
paper has presented the closed-loop sensitivity measure in
this context. In this sense, it generalizes the results of [1].
Moreover, the present development applies for both fixed-
point and floating-point arithmetic, enabling one to analyze
more precisely the effects of quantization and rounding on
the parameters of a digital controller implementation.

As shown on two examples, the measure is computation-
ally tractable and hence amenable to solving the problem
of finding a good realization with regard to the parametric
sensitivity FWL effect. Furthermore, the sensitivity to the
rounding of each individual parameter can be easily obtained,
which may be very useful from a methodological point of
view.

Although the computational cost has been given for each
presented realization, they have not been discussed. The way
to manage the compromise between the sensitivity measure,
the computational effort, the rounding noise and the risk of
overflow will be considered in a future paper.
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APPENDIX

Ap =

0

B

B

@

9.9988e−1 1.9432e−5 5.9320e−5 −6.2286e−5

−4.9631e−7 2.3577e−2 2.3709e−5 2.3672e−5

−1.5151e−3 2.3709e−2 2.3751e−5 2.3898e−5

1.5908e−3 2.3672e−2 2.3898e−5 2.3667e−5

1

C

C

A

Bp =

0

B

B

@

3.0504e−3

−1.2373e−2

−1.2375e−2

−8.8703e−2

1

C

C

A

Cp =

0

B

B

@

1

0

0

0

1

C

C

A

⊤

(48)

Z0 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

3.325e+0 −3.982e+0 1.987e+0 −3.307e−1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

−1.611e−3 3.758e−3 −2.684e−3 5.366e−4 −8.084e−4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,
δH̃

δZ

˛

˛

˛

˛

˛

Z0

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

6.291e+7 6.291e+7 6.291e+7 6.291e+7 6.065e−2

1.464e+8 1.464e+8 1.464e+8 1.464e+8 1.413e−1

1.044e+8 1.044e+8 1.044e+8 1.044e+8 1.008e−1

2.085e+7 2.085e+7 2.085e+7 2.085e+7 2.016e−2

1.536e+8 1.536e+8 1.536e+8 1.536e+8 2.315e−1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(49)

Z1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

7.467e−1 −1.440e−1 −1.573e−1 −1.408e−2 −1.954e−4

−5.086e−1 6.942e−1 −3.288e−1 −2.688e−2 3.935e−3

−1.657e−1 −9.209e−2 8.991e−1 −9.481e−3 −3.448e−3

−2.470e−1 −1.388e−1 −1.501e−1 9.855e−1 1.496e−3

1.430e+0 −7.149e−1 −3.335e−1 2.217e−1 −8.084e−4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,
δH̃

δZ

˛

˛

˛

˛

˛

Z1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1.353e+2 2.130e+2 3.249e+2 8.355e+2 4.577e+1

6.131e+1 9.905e+1 1.492e+2 3.784e+2 2.194e+1

7.568e+1 9.976e+1 1.672e+2 4.685e+2 1.473e+1

2.167e+1 3.359e+1 5.162e+1 1.338e+2 7.081e+0

6.393e−1 1.037e+0 1.559e+0 3.946e+0 2.315e−1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(50)

Z3 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−1 0 0 0 −8.316e+0 1.114e+1 3.108e+0 −4.865e+0 3.683e−2

0 −1 0 0 6.036e+0 −8.458e+0 −2.466e+0 3.662e+0 2.341e−2

0 0 −1 0 −8.472e+0 1.157e+1 3.284e+0 −5.042e+0 4.442e−3

0 0 0 −1 −1.347e+1 1.863e+1 5.358e+0 −8.094e+0 −4.777e−3

3.125e−2 0 0 0 1 0 0 0 0

0 3.125e−2 0 0 0 1 0 0 0

0 0 3.125e−2 0 0 0 1 0 0

0 0 0 3.125e−2 0 0 0 1 0

0 0 0 0 −1.248e+1 1.525e+1 4.116e+0 −6.892e+0 −8.084e−4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(51)

δH̃

δZ

˛

˛

˛

˛

˛

Z3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

5.131e−3 8.472e−3 7.613e−3 1.031e−2 2.633e−1 6.329e−1 5.877e−1 8.116e−1 1.423e+0

3.931e−3 7.367e−3 6.688e−3 9.210e−3 3.071e−1 1.103e+0 1.034e+0 1.457e+0 1.260e+0

8.230e−3 1.553e−2 1.418e−2 1.934e−2 5.398e−1 1.579e+0 1.475e+0 2.060e+0 2.659e+0

4.606e−3 9.847e−3 9.082e−3 1.247e−2 3.818e−1 1.265e+0 1.185e+0 1.664e+0 1.708e+0

1.642e−1 2.711e−1 2.436e−1 3.300e−1 8.426e+0 2.025e+1 1.881e+1 2.597e+1 4.554e+1

1.258e−1 2.357e−1 2.140e−1 2.947e−1 9.826e+0 3.531e+1 3.309e+1 4.664e+1 4.033e+1

2.634e−1 4.970e−1 4.538e−1 6.189e−1 1.728e+1 5.053e+1 4.720e+1 6.593e+1 8.508e+1

1.474e−1 3.151e−1 2.906e−1 3.990e−1 1.222e+1 4.048e+1 3.790e+1 5.324e+1 5.466e+1

1.079e−3 1.442e−3 1.243e−3 1.669e−3 4.075e−2 8.483e−2 7.809e−2 1.071e−1 2.315e−1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Ap=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

+8.384e−1 +1.600e−1 −3.294e−1 −4.833e−2 0 0 0 0 0 0

−3.927e−1 +7.144e−1 +5.040e−2 −8.245e−3 0 0 0 0 0 0

−1.566e−1 −6.105e−1 +3.683e−2 +4.195e−1 0 0 0 0 0 0

−1.444e−1 +1.772e−1 −6.798e−1 +6.508e−1 0 0 0 0 0 0

+1.929e−1 +1.512e−1 +4.030e−1 +3.898e−1 +9.773e−1 +1.037e−2 −6.170e−2 0 0 0

+2.768e−4 +2.170e−4 +5.783e−4 +5.594e−4 +2.837e−3 +9.971e−1 +1.698e−2 0 0 0

+3.238e−2 +2.539e−2 +6.767e−2 +6.545e−2 +3.320e−1 −3.341e−1 +9.868e−1 0 0 0

0 0 0 0 0 0 0 +1.000e+0 −1.000e−10 0

0 0 0 0 0 0 0 +1.000e−2 +1.000e+0 0

0 0 0 0 0 0 0 0 0 +9.417e−1
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C

C

C

C

C

C

C

C

C

C

C

C
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Bp=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−4.007e+0

−5.769e+0

−6.522e+0

2.490e+0

8.562e−1

1.229e−3

1.438e−1

1.000e+0

5.000e−3
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1

C

C

C

C

C

C

C

C

C

C

C
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C
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B

B

B

B

B

B

B

B

B

B

B

B

B

@

9.209e−3

7.221e−3

1.924e−2

1.861e−2

9.441e−2

4.953e−4

−2.946e−3

0

0

−3.495e−1

1

C

C

C

C

C

C

C

C

C

C

C

C

C
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B
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−2.372e+0

−2.540e+0

−1.210e−1

−1.565e−4

−6.245e−2

1.151e+0
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2.255e−1

−1.528e−2

−9.720e−4
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−2.372e−2

2.540e−2

1.210e−3

−1.565e−6

6.245e−4
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4.083e−4

−2.255e−3
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9.720e−6
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, D=−2.140e−1 (54)

A=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

8.195e−1 2.812e−1 −3.317e−2 2.699e−2 −1.649e−1 1.318e−1 1.059e−2 −6.733e−2 1.750e−3 6.525e−5

−2.812e−1 −4.817e−1 −1.668e−1 8.654e−2 −5.403e−1 1.469e−1 1.837e−2 −1.211e−1 1.942e−3 2.134e−5

3.317e−2 −1.668e−1 9.749e−1 1.696e−2 −9.104e−2 7.638e−2 3.357e−3 −2.006e−2 8.441e−4 4.548e−5

2.699e−2 −8.654e−2 −1.696e−2 9.601e−1 2.528e−1 5.956e−2 1.654e−3 −9.085e−3 6.046e−4 3.843e−5

1.649e−1 −5.403e−1 −9.104e−2 −2.528e−1 6.022e−1 3.888e−1 1.150e−2 −6.420e−2 3.945e−3 2.454e−4

1.318e−1 −1.469e−1 −7.638e−2 5.956e−2 −3.888e−1 4.664e−1 −6.206e−2 4.224e−1 −8.490e−4 3.703e−4

1.059e−2 −1.837e−2 −3.357e−3 1.654e−3 −1.150e−2 −6.206e−2 9.832e−1 1.258e−1 7.737e−3 6.392e−4

6.733e−2 −1.211e−1 −2.006e−2 9.085e−3 −6.420e−2 −4.224e−1 −1.258e−1 −4.483e−2 7.258e−2 5.631e−3

−1.750e−3 1.942e−3 8.441e−4 −6.046e−4 3.945e−3 8.490e−4 −7.737e−3 7.258e−2 9.838e−1 −2.474e−3

−6.525e−5 2.134e−5 4.548e−5 −3.843e−5 2.454e−4 −3.703e−4 −6.392e−4 5.631e−3 −2.474e−3 9.418e−1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Z =

0

B

B

B

B

B

B

B

B

B

B

@

I 0 −Cp I

−Q I −Kc 0

−Kf −Bp Ap 0

0 −I 0 0

1

C

C

C

C

C

C

C

C

C

C

A

(56)
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