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Abstract 

We consider a tactical planning problem, which integrates production planning decisions 

together with order acceptance decisions, while taking into account the dependency between 

workload and lead times. The proposed model determines which orders to accept and in 

which period they should be produced so that they can be delivered to the customer within the 

acceptable flexible due dates. When the number of accepted orders increases, the workload 

and production lead time also increase and this may result in the possibility of missing 

customer due dates. This problem is formulated as a mixed integer linear program for which 

two relax-and-fix heuristic solution methods are proposed. The first one decomposes the 

problem based on time periods while the second decomposes it based on orders. The 

performances of these heuristics are compared with that of a state-of-the-art commercial 

solver. Our results show that the time-based relax-and-fix heuristic outperforms the order-

based relax-and-fix heuristic and the solver solution as it yields better integrality gaps for 

much less CPU effort. 

Keywords: Production Planning; Order Acceptance; Clearing Functions; Load-Dependent 

Lead Times, Flexible Lead Times; Relax-and-Fix, Delivery Time Windows 
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1. Introduction 

  The usual production planning models have as primary objective customer demand 

satisfaction while minimizing production costs or maximizing profit. At the tactical level, 

customer orders are grouped as part of aggregation decisions that are made on data in order to 

either simplify the planning model or for managerial purposes (see Jacobs et al., 2011). 

However, it is often important to distinguish customer orders for several reasons (Pahl et al., 

2007; Aouam and Brahimi, 2013). Firstly, even if the finished good is the same, different 

customers might impose particular conditions on the source of raw materials or on the quality 

control tests to be carried out during the manufacturing process of their orders. Secondly, in 

the case of limited capacity, the production planner can only satisfy demands partially and 

consequently has to decide which orders to satisfy. 

 

 Furthermore, even when there is enough capacity to avoid shortage, it is not always clear 

whether all orders should be accepted or not. Indeed, traditional production planning models 

make two fundamental assumptions: (i) the production lead times are constant and do not 

depend on the workload, (ii) and in any given period, the shadow price of the capacity 

constraint is equal to zero when there is enough capacity (capacity constraint is not binding); 

this means that the cost of adding one unit (or order) to the production stage is zero as long as 

the capacity limit is not reached. As a consequence of these assumptions, production planning 

models try to satisfy as many customer orders with known due dates as production capacity 

permits. 

 

 Production lead-times, i.e., the time required for material released into the production 

system to be transformed into finished goods that can be used to meet demand, depend on the 

workload. Queuing models have revealed that lead-time increases non-linearly as the resource 

utilization approaches 100% (Buzacott and Shanthikumar, 1993; Hopp and Spearman, 2001). 

This creates a circular, non-linear dependency between lead-time and utilization: production 

planning needs to be cognizant of lead-times in making its release decisions, since the lead-

times are a consequence of the workload, and hence the release decisions. Therefore, the more 

orders are accepted the higher are the production lead times, resulting in the possibility of 

missing customer due dates. This means that the planner can be faced with situations where 

production capacity is available but the next orders should be rejected in order not to delay 

some already accepted customer orders. 
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 In addition, even if the unit price the customer is willing to pay exceeds the variable 

production cost and there is enough capacity to avoid shortage, the decision whether a 

customer order should be accepted or not is not always straightforward. There are two 

possible arguments to support this fact. The first argument has to do with economies of scale. 

In fact, in the case of high fixed or set-up costs it might not be economical to satisfy a single 

order of a small quantity. The order must be aggregated with additional orders to justify the 

production setup (Geunes et al., 2006). The second argument has to do with the workload of 

the production stage. Kefili et al. (2011) show that the marginal prices of capacitated 

resources are not necessarily equal to zero when the utilization is less than one. This means 

that even in the case where capacity is available, the revenue from an additional order should 

at least offset the variable production cost plus the shadow prices of the capacity constraints 

that take into account workload.  

 

 Therefore, models that integrate production planning decisions with load dependent lead 

times and order acceptance decisions have a great potential to improve the overall 

profitability of the firm. In addition, when due date flexibility is allowed, i.e., the due date 

required by the customer is given as an interval of possible dates (time window) rather than a 

fixed date, more orders can be accepted resulting in higher profits and more reliable delivery 

dates (lower delays). In this research work, we integrate order acceptance and production 

planning decisions in a single model, while considering flexible due dates and load dependent 

lead times. When an order is accepted, it is scheduled over a planning horizon of T periods 

and incurs production costs and eventually inventory holding costs. The rejection of a 

customer order results in a lost sale cost. To quantify the benefits of order acceptance 

integration, the proposed model is compared to a production planning model with load 

dependent lead-times where all orders are accepted resulting in backorders in the case of 

capacity shortage. Furthermore, to evaluate the benefits of flexibility, the proposed model is 

compared to an integrated production planning model with order acceptance considering fixed 

due dates and lost sales.  The considered problem is formulated as a mixed integer linear 

program (MILP). When the number of orders and the number of periods increase, and for 

certain parameter settings it becomes difficult if not impossible to obtain good solutions in 

reasonable computation times. We propose relax-and-fix heuristics to solve efficiently large 

instances of the problem. 
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 The remainder of the paper is organized as follows. A literature review is presented in 

Section 2. In section 3, the production planning problem with backordering where all orders 

are accepted is formulated. In section 4, order acceptance decisions are integrated with 

production decisions.  Two models are then presented, one in which due dates are fixed and 

another one which considers flexible due dates. In section 5, two relax-and-fix heuristics are 

presented. Section 6 presents some numerical experiments to compare the three models 

economically and evaluate the proposed heuristics. Some concluding remarks are presented in 

Section 7. 

2. Literature Review 

 The dependency between resource utilization and lead times (or equivalently available 

capacity) has already been addressed to some degree by some authors. Voss and Woodruff 

(2003) propose a nonlinear model where the function linking lead time to workload is 

approximated by a piecewise linear function. Ettl et al. (2000) take a similar approach, and 

added a convex term, representing the cost of carrying work-in-process (WIP) as a function of 

workload, to the objective function. Graves (1986), Karmarkar (1989), Missbauer (2002), and 

Asmundsson et al. (2006; 2009) use clearing functions (CFs) to model the dependency 

between workload and lead times. Several related models are proposed in the recent book by 

Hackman (2008). Pahl et al. (2005, 2007) and Missbauer and Uzsoy (2010) review production 

planning models with load-dependent lead times. Aouam and Uzsoy (2012; 2014) compare 

the performance of various production planning models with workload-dependent lead times 

under demand uncertainty. In this paper, a CF is used to model the capacity of the production 

stage in order to relate the production workload resulting from all accepted orders to the 

production lead-times. 

 

 Ivanescu et al. (2002) consider the order acceptance problem in the batch industries where 

the processing times are uncertain. The authors use regression based models in order to 

determine whether there is enough capacity to accept a customer order with the due date 

requested by the customer. Markov decision models are used by Defregger and Kuhn (2005) 

to decide about the orders to accept or to reject in a planning process over a number of 

periods. Geunes et al. (2002) consider a production planning problem with order acceptance 

and call it the order selection problem. The uncapacitated case is solved using a polynomial 

time algorithm and they propose a Lagrangian relaxation approach for the capacitated case. 

For a more extensive review of order acceptance literature the reader is referred to Slotnick 

(2011). Aouam and Brahimi (2013) present a robust model that integrates production 
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planning with load dependent lead-times and order acceptance decisions, which considers 

demand uncertainty and where a fraction of the order quantity can be accepted. They show 

that integrating the two decisions provides the planner with the flexibility to select the orders 

to be satisfied fully or partially. This flexibility enables the planner to maintain release 

quantities and utilization at desirable levels, which leads to high profits and high levels of 

customer satisfaction. Unlike their work, the present paper accepts to deliver the entire 

quantity of an order or none and hence order acceptance/rejection decisions are modeled as 

binary variables. Furthermore, the present paper considers customer due date flexibility.  

 

 The subject of lead time or due date flexibility is directly related to demand time windows. 

The latter are grace periods (allowed by the customers) during which the order can be 

delivered without penalty. To the best of our knowledge, the first production planning models 

with demand time windows were introduced by Lee et al. (2001). They proposed dynamic 

programming algorithms to solve uncapacitated lot sizing problems with and without 

backlogging. Charnsirisakskul et al. (2004) propose an order acceptance model where they 

show the economic benefits of lead time flexibility. They solve a capacitated example using 

the commercial solver CPLEX. Merzifonluoğlu and Geunes (2006) propose a similar model 

with production setup decisions. The uncapacitated case is solved using a dynamic 

programming algorithm, while the authors propose heuristics to solve the general case. This 

stream of work emphasizes the integration of order acceptance decisions in production 

planning decisions to take into account economies of scale achieved per setup when orders are 

aggregated. Recently, Brahimi (2014) considered the issue of integrating order acceptance 

decisions with due date flexibility. He presents two heuristic solutions for the problem: a 

reversals heuristic and a relax-and-fix heuristic based on order decomposition. The present 

paper improves these heuristics and presents a new time based relax and fix heuristic that 

outperforms them in terms of integrality gap and CPU times. This paper also analyses the 

effects of workload and shows that there is added value from integrating order acceptance and 

due date flexibility in production planning models. 

 

Relax-and-fix heuristics were applied to different production planning problems 

including the capacitated single level multi-item lot sizing problem (Federgruen et al. 2007), 

the multi-level lot sizing problem (Stadtler, 2003), and the lot sizing and scheduling problem 

with parallel machines (Beraldi et al., 2008). It was also used to solve problems in particular 

applications. Toso et al. (2009), for example, solve a lot sizing problem at an animal-feed 
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plant using three different variants of a relax-and-fix heuristic. Ferreira et al. (2010) use the 

embedded relax-and-fix heuristic of commercial solver CPLEX to solve a production 

planning problem that arises in soft drink plants. Relax-and-fix heuristics consist of fixing 

different sub-categories of variables and relaxing the others (ex. Toso, 2009). Most 

implementations in production planning consider partitioning the time horizon and forward or 

backward fixing integer variables (ex. Federgruen and Tzur, 1999; Stadtler, 2003; Federgruen 

et al. 2007; and Akartunali and Miller, 2009). 

 

 Compared to previous work, our models consider more realistic capacity constraints that 

reflect the dependency between workload, affected by the number of accepted orders, and 

production lead times. The models also incorporate flexible due dates that allow production 

smoothing, increase the number of accepted orders, and determine reliable due dates. 

Furthermore, two relax and fix heuristics are proposed and compared: one decomposes the 

problem based on time periods and the other based on customer orders. The latter heuristic 

incorporates reversals, which are inspired by the sub-tour reversals heuristic for the traveling 

salesman problem (Taha, 2010).  

3. Production Planning With Load-Dependent Lead Times 

 Linear programming based production planning models typically consider fixed lead 

times or time lags and represent capacity as a fixed upper bound on the number of hours 

available at the resource in a period (Voss and Woodruff, 2003). However, these lead times or 

time lags are independent of workload. As an alternative, load-dependent production planning 

models with clearing functions (CFs) capture the relationship between workload and output at 

a capacitated production resource (Graves, 1986; Srinivasan et al., 1988; Karmarkar, 1989). A 

CF represents the relationship between the average workload of a production resource, 

usually some measure of work in process inventory (WIP), and the average throughput of the 

resource in a planning period. For most capacitated production resources subject to 

congestion, limited capacity leads to a CF that is concave and increasing (Missbauer and 

Uzsoy, 2010).  

 

 The load-dependent production planning model determines production decisions to match 

aggregate demand in each period in order to maximize the total profit. Customer orders in this 

case are aggregated based on their delivery due date. Each order 𝑖 is characterized by an order 

size 𝑞𝑖, reservation price or marginal revenue 𝜋𝑖 and a due date 𝜏𝑖. Orders can be delayed as 

far as the last production period in the planning horizon T. The decision variables in the 
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model are, for each period: the quantity released 𝑅𝑡, the production level 𝑋𝑡, the Work-In-

Process (WIP) level 𝑊𝑡, the inventory level 𝐼𝑡, and the backlogging level 𝐵𝑡. The marginal 

costs are: release cost 𝑟𝑡, processing cost 𝑐𝑡, WIP holding cost 𝑤𝑡, inventory holding cost ℎ𝑡, 

and backlogging cost 𝑝𝑡. The CF, denoted by 𝑓(. ) that is increasing and concave with 𝑓(0) =

0, relates the throughput to the WIP as follows,  

 𝑋𝑡 = 𝑓(𝑊̅𝑡) ∀𝑡    (1) 

where 𝑊̅𝑡 = 𝑊𝑡−1 +  𝑅𝑡 represents the resource load for period t, or the total amount of work 

that becomes available for processing during the period. Following Asmundsson et al. (2006) 

and Missbauer (2002), and for tractability reasons, the CF is approximated using an outer 

linearization. In fact, 𝑓(. ) can be approximated by the convex hull of a set of affine functions 

of the form, 

 𝑓(𝑊) = 𝑚𝑖𝑛𝑘=1…𝐾{𝑎𝑘𝑊 + 𝑏𝑘}              (2) 

𝑎𝑘 and  𝑏𝑘 are the slope and intercept of the segments 𝑘 ∈ {1 … 𝐾}. The load-dependent 

production planning model is given by:  

PP-B 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝐵(𝑅𝑡, 𝑋𝑡, 𝑊𝑡, 𝐼𝑡, 𝐵𝑡) = 

∑ 𝜋𝑖𝑞𝑖

𝑖

− ∑(𝑟𝑡𝑅𝑡 + 𝑐𝑡𝑋𝑡 + 𝑤𝑡𝑊𝑡 + ℎ𝑡𝐼𝑡 + 𝑝𝑡𝐵𝑡)

𝑡

 

(3) 

Subject to constraints:   

𝑊𝑡 = 𝑊𝑡−1 + 𝑅𝑡 − 𝑋𝑡 𝑡 = 1, . . . , 𝑇 (4) 

𝐼𝑡 = 𝐼𝑡−1 + 𝑋𝑡 − ∑ 𝑞𝑖

{𝑖: 𝜏𝑖=𝑡}

+ 𝐵𝑡 − 𝐵𝑡−1 𝑡 = 1, . . . , 𝑇 (5) 

𝑋𝑡 ≤ 𝑎𝑘(𝑊𝑡−1 + 𝑅𝑡) + 𝑏𝑘 𝑡 = 1, . . . , 𝑇 ∧  𝑘 = 1, . . . , 𝐾   (6) 

𝑅𝑡, 𝑋𝑡, 𝑊𝑡, 𝐼𝑡, 𝐵𝑡 ≥ 0 𝑡 = 1, . . . , 𝑇 (7) 

 The objective function in equation (3) maximizes the total profit 𝑃𝐵 over the planning 

horizon. Constraints (4) and (5) define WIP and finished goods inventory balances, 

respectively for each period. Constraints (6) represent the capacity constraints defined by the 

CF. The non-negativity constraints are defined in (7). 

4. Integrated Production Planning Models with Order Acceptance 

In the PP-B model, as the number of orders increases the WIP also increases leading to 

elongated production lead times. This can result in backorders, i.e., some orders might be 
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delivered after their due dates. Therefore, giving the production planner the flexibility to 

accept or reject orders would lead to higher profitability for the firm. This can be achieved by 

integrating order acceptance and production planning decisions in a single model. Let the 

binary variable 𝑌𝑖 such that 𝑌𝑖 = 1 if order i is accepted and 𝑌𝑖 = 0 otherwise. The marginal 

cost of lost sale corresponding to order i is denoted by 𝑙𝑖. The integrated production planning 

model with order acceptance is formulated as follows: 

PP-OA 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝑂𝐴(𝑅𝑡, 𝑋𝑡, 𝑊𝑡, 𝐼𝑡, 𝑌𝑖)  

= ∑ 𝜋𝑖𝑞𝑖𝑌𝑖

𝑖

− ∑(𝑟𝑡𝑅𝑡 + 𝑐𝑡𝑋𝑡 + 𝑤𝑡𝑊𝑡 + ℎ𝑡𝐼𝑡)

𝑡

− ∑ 𝑙𝑖(1 − 𝑌𝑖)

𝑖

 

(8) 

Subject to constraints:   

𝑊𝑡 = 𝑊𝑡−1 + 𝑅𝑡 − 𝑋𝑡 𝑡 = 1, . . . , 𝑇 (9) 

𝐼𝑡 = 𝐼𝑡−1 + 𝑋𝑡 − ∑ 𝑞𝑖𝑌𝑖

{𝑖: 𝜏𝑖=𝑡}

 𝑡 = 1, . . . , 𝑇 (10) 

𝑋𝑡 ≤ 𝑎𝑘(𝑊𝑡−1 + 𝑅𝑡) + 𝑏𝑘 𝑡 = 1, . . . , 𝑇 ∧  𝑘 = 1, . . . , 𝐾   (11) 

𝑅𝑡, 𝑋𝑡, 𝑊𝑡, 𝐼𝑡 ≥ 0 𝑡 = 1, . . . , 𝑇 (12) 

𝑌𝑖: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑖 = 1, . . . , 𝑁 (13) 

 

 The objective function in equation (8) maximizes the total profit 𝑃𝑂𝐴 over the planning 

horizon. The first term is the revenue generated from the orders accepted, the second term is 

the total production costs, and the last term is the total cost of lost sales. Constraints (10) are 

the modified finished goods inventory balance. The other constraints are as defined above. 

 

 The previous model takes into account load dependent lead-times in order to ensure that 

delivery of accepted orders meets the pre-specified due dates.  This model however, can result 

in a high number of rejected orders. When due date flexibility is allowed, i.e., the due date 

required by the customer is given as a set of possible dates rather than a fixed date, a win-win 

situation for the firm and customers can be achieved. In fact, this flexibility when captured in 

production planning models results in more accepted orders, smoother production plans, 

higher profits, and more reliable due dates (lower delays). In this setting, a customer provides 

a time window with earliest delivery date 𝑒𝑖 and a latest delivery date 𝑓𝑖. Let the binary 

variable 𝑆𝑖𝑡 such that 𝑆𝑖𝑡 = 1 if order i is accepted and to be satisfied in period 𝑡 ∈ [𝑒𝑖, 𝑓𝑖] and 
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𝑆𝑖𝑡 = 0 otherwise. The integrated production planning and order acceptance model with 

flexible due dates can be formulated as follows: 

PP-OA-FDD 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝐹𝐷𝐷(𝑅𝑡, 𝑋𝑡, 𝑊𝑡, 𝐼𝑡, 𝑆𝑖𝑡)

= ∑ 𝜋𝑖𝑞𝑖 ∑ 𝑆𝑖𝑡

𝑓𝑖

𝑡=𝑒𝑖𝑖

− ∑(𝑟𝑡𝑅𝑡 + 𝑐𝑡𝑋𝑡 + 𝑤𝑡𝑊𝑡 + ℎ𝑡𝐼𝑡)

𝑡

− ∑ 𝑞𝑖𝑙𝑖 (1 − ∑ 𝑆𝑖𝑡

𝑓𝑖

𝑡=𝑒𝑖

)

𝑖

 

(14) 

Subject to constraints:   

𝑊𝑡 = 𝑊𝑡−1 + 𝑅𝑡 − 𝑋𝑡 𝑡 = 1, . . . , 𝑇 (15) 

𝐼𝑡 = 𝐼𝑡−1 + 𝑋𝑡 − ∑ 𝑞𝑖𝑆𝑖𝑡

𝑖

 𝑡 = 1, . . . , 𝑇 (16) 

𝑋𝑡 ≤ 𝑎𝑘(𝑊𝑡−1 + 𝑅𝑡) + 𝑏𝑘 𝑡 = 1, . . . , 𝑇 ∧  𝑘 = 1, . . . , 𝐾   (17) 

∑ 𝑆𝑖𝑡

𝑓𝑖

𝑡=𝑒𝑖

≤ 1 𝑖 = 1, . . . , 𝑁 (18) 

𝑅𝑡, 𝑋𝑡, 𝑊𝑡, 𝐼𝑡, ≥ 0 𝑡 = 1, . . . , 𝑇 (19) 

𝑆𝑖𝑡: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡 = 1, . . . , 𝑇 ∧  𝑖 = 1, . . . , 𝑁 (20) 

 

The objective function in equation (14) maximizes the total profit 𝑃𝐹𝐷𝐷 over the planning 

horizon. Constraints (18) ensure that order i can only be accepted and satisfied within the 

customer specified time window [𝑒𝑖 , 𝑓𝑖]. 

5. Heuristics for Solving PP-OA-FDD 

5.1 General structure of the heuristics 

For problems of realistic sizes, with a large number of planning periods and orders, problem 

PP-OA-FDD is very hard to solve in reasonable computational times. This section presents 

two relax-and-fix heuristics to tackle this difficulty. The first heuristic decomposes the 

problem based on time periods while the second decomposes the problem based on customer 

orders. In relax-and-fix heuristics, the integer variables in a MILP formulation are separated 

into subsets. The heuristic usually proceeds by fixing a subset of variables, usually the most 

important ones, and relaxing the integrality of the other variables. Then, it gradually fixes the 
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relaxed variables (Wolsey, 1998). A very detailed and practical presentation of a relax-and-fix 

heuristic for lot sizing problems can be found in Pochet and Wolsey (2006). The only 

integer/binary variables in PP-OA-FDD formulation are 𝑆𝑖𝑡 variables and thus the problem 

can be decomposed over orders (𝑖 = 1. . 𝑁) or over time periods (𝑡 = 1. . 𝑇).  

5.2 Time-based relax-and-fix heuristic 

In the time based decomposition, integrality constraints are imposed on variables 𝑆𝑖𝑡 (∀ 𝑖 =

1. . 𝑁) within a decision time window, which is an internally rolling horizon. In any iteration 

of the relax-and-fix heuristic, the time horizon (the set of decisions over the time horizon) is 

partitioned into three intervals (subsets of variables): a decision time window (integer 

decision subset), a frozen interval (frozen subset) preceding the decision time window and 

consisting of periods with variables that are fixed, and an approximation interval (relaxed 

subset) after the decision window where the binary constraints are relaxed. The two main 

parameters of this approach are: the size of the decision time window (𝛼) and the size of the 

frozen interval (𝛽 ≤ 𝛼). In any iteration, the decisions of the first 𝛽 periods in the current 

decision window will be frozen in the following iteration. Figure 1 illustrates the three sub-

intervals for 𝛼 = 5 and 𝛽 = 3. In each iteration, an optimal or heuristic solution is obtained 

using a MILP solver. If the heuristic approach is adopted, then two stopping parameters need 

to be determined for the heuristic: the minimum integrality gap and the maximum allowed 

CPU time in each iteration. 

 

Figure 1. The different intervals in a time-based decomposition of a relax-and-fix heuristic 

5.3 Order-based relax-and-fix heuristic 

The main difference between the order-based decomposition and the time-based 

decomposition is that intervals (subsets of decisions) are naturally identified because of the 

chronological nature of time periods, while a sequence of orders (𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑁}) needs to 

be determined. Then the relax-and-fix heuristic is applied on a given sequence and results in a 
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given feasible solution of the problem instance. Several sequences of orders are constructed 

and evaluated. 

 

An initial sequence is obtained using a Most Profitable First (MPF) priority rule. In the MPF 

rule, initially, all orders are supposed to be released and satisfied on their earliest due date, 

which yields a unit profit of 𝜋𝑖
′ = 𝜋𝑖 − 𝑟(𝜏𝑖) for each order 𝑖 and the sequence (𝐼 =

{𝑖1, 𝑖2, … , 𝑖𝑁}) is obtained by sorting the orders in decreasing order of unit profit 𝜋𝑖
′ using 

QuickSort function as shown on line 10 of Algorithm 1. For this sequence, the relax-and-fix 

heuristic is applied in such a way that the decision subset corresponds to the first 𝛼′ orders. 

The frozen subset is 𝛽′ ≤ 𝛼′ (line 180) and the decisions corresponding to the rest of the 

orders belong to the relaxed subset. 

 

After updating the best solution (line 200), other sequences are constructed using the reversals 

heuristic, subroutine Reverse. When the initial sequence is reversed two-by-two, the resulting 

new sequences are: 𝐼 = {𝑖2, 𝑖1, … , 𝑖𝑁}, 𝐼 = {𝑖1, 𝑖3, 𝑖2, … , 𝑖𝑁}, …, 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑁 , 𝑖𝑁−1}. The 

best reversal and solution value are saved. The best sequence in the two-by-two reversal is 

used as a starting point for a three-by-three reversal. Supposing that the best solutions 

obtained for sequence {𝑖1, 𝑖3, 𝑖2, 𝑖4, 𝑖5, … , 𝑖𝑁} in the two-by-two reversals, in the three-by-three 

reversals, the generated sequences are {𝑖2, 𝑖3, 𝑖1, 𝑖4, 𝑖5, … , 𝑖𝑁}, {𝑖1, 𝑖4, 𝑖2, 𝑖3, 𝑖5, … , 𝑖𝑁}, 

{𝑖1, 𝑖3, 𝑖5, 𝑖4, 𝑖2, … , 𝑖𝑁}, …, and {𝑖1, 𝑖3, 𝑖2, 𝑖4, 𝑖5, … , 𝑖𝑁 , 𝑖𝑁−1, 𝑖𝑁−2}. The best sequence in the 

three-by-three reversals is the starting point of a four-by-four reversals and so on. 
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The Relax-and-fix(𝛼′, 𝛽′) subroutine (Algorithm 2) forces the integrality condition on 

binary variables of the first 𝛼′ orders with the highest profit 𝜋′ and relaxes the other binary 

variables. Then, it permanently fixes the solution for the first 𝛽′ variables (𝛽′ ≤ 𝛼′), sets 

integrality constraints on variables indexed from 𝛽′ + 1 to 𝛽′ + 𝛼′ and relaxes integrality 

for orders after 𝛽′ + 𝛼′ + 1. The process is repeated until the last order in the sorted list is 

reached. Furthermore, compared to simple relax-and-fix heuristics, our heuristic applies the 

reversals function and explores more possible solutions. The heuristic’s main inputs are the 

number of orders for which the integrality constraints are to be respected in each iteration 

(𝛼′) and the number of orders for which the binary variables are to be permanently fixed in 

each iteration (𝛽′). The first step of the heuristic calculates the number of iterations based on 

these two parameters. Then, starting from the beginning of the sequence of the sorted orders, 

the sub-problems are solved until all binary decision variables are fixed. 

 

Algorithm 1: RerversalsHeuristic 

BestSequence ← QuickSort(Orders); 

BestProfit ← −∞  

for Reversals ← 1 until N do 

if Reversals = 1 then 

    MaxReversals ← 1 

   else 

    MaxReversals ← N-Reversals+1 

   end-if 

   ReversalBestProfit  ← −∞ 

   for ReversePoint ← 1 until MaxReversals do 

    for i ← 1 until N do 

     S[i] ← 0; 

    flag ← true; 

    if (Reversals > 1) then 

   Reverse(BestSequence,ReversePoint,ReversePoint+Reversals-1) 

    end-if 

    SequenceBestProfit ←  −∞ 

  Relax-and-fix(𝛼′, 𝛽′, sequence) 

    if (SequenceBestProfit ≥ ReversalBestProfit) then 

     ReversalBestProfit ← SequenceBestProfit; 

     UpdateBestSequence(); 

    end-if 

   end-for 

   if (ReversalBestProfit ≥ BestProfit) then 

    BestProfit ← ReversalBestProfit; 

    UpdateBestSequence(); 

   end-if 

  end-for 
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6. Experimental Results 

 This section evaluates the added value from integrating production and order acceptance 

decisions and introducing due date flexibility. It also evaluates the efficiency of the proposed 

heuristics. The optimization models as well as the heuristics have been implemented in 

Xpress-IVE version 1.24 (2013) and run on a PC with intel CORE i7-2.4Ghz microprocessor 

and 16GB RAM. 

6.1. Generated data sets 

 Two groups of data sets were generated. A first group with 𝑇 = 8 and 𝑁 = 15 was 

generated to carry out the economic experiments (Section 6.2) and a second group 

corresponding to a total of 𝑁 =20 to 500 orders received for a period of 𝑇 =10 to 100 

periods. The production related unit costs are 𝑟𝑡 =$3, while 𝑐𝑡 =0, 𝑤𝑡 =$35, and ℎ𝑡 =$15, 

∀𝑡. The unit profit is equal to 100, 110 and 115 for small, medium, and large size orders, 

respectively. The earliest delivery date of each order is generated from a uniform distribution 

between 1 and 𝑇. The size of each order is generated from a uniform distribution between 
1

2
𝑞̅ 

and  
3

2
𝑞̅, where: 

𝑞̅ =
𝑇 × 𝑏𝐾 × 𝐷𝐶

𝑁
 

𝐷𝐶 is the total orders over the nominal capacity for the whole planning horizon, i.e. 𝐷𝐶 =

∑ 𝑞𝑖𝑖

𝑇×𝑏𝐾
. 

 The lost sale cost per unit is: 𝑙𝑖 = 1.2 × 𝜋𝑖. The intercepts and the slopes of the clearing 

function are defined as (𝑎𝑘, 𝑏𝑘) = (0.5, 0), (0.069, 136), (0.036, 154.8), (0, 180) for 𝑘 =

1, . . . ,4. In the case of PP-B model, the penalty cost 𝑝𝑡 = 8 × ℎ𝑡. The analysis of the 

effectiveness of the models and the performance of the heuristics was based mainly on 

capacity tightness determined by coefficient 𝐷𝐶 =
∑ 𝑞𝑖𝑖

𝑇×𝑏𝐾
 and order time window Δ𝑖 = 𝑓𝑖 −

𝑒𝑖 + 1. DC was varied between 0.6 (loose capacity) and 1.2 (demand exceeding capacity). To 

Algorithm 2: Subroutine Relax-and-Fix(𝛼′, 𝛽′, Sequence) 

 

  Input: 𝛼′, 𝛽′ 

  Caculate NumIter 

  for i ← 1 until NumIter 

   Relax binary variables of orders after the last 𝛼′ interval 

   Solve the sub-problem   Permanently fix 𝑆𝑖𝑡  variables for orders within 𝛽′ 

  end-for; 
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analyze the impact of due date flexibility, Δ𝑖 was varied between 1 and 6, where Δ𝑖 = 1 

corresponds to PP-OA model, while Δ𝑖 > 1 corresponds to PP-OA-FDD model. 

6.2. Economic experiments 

 The effectiveness of the proposed integrated model PP-OA-FDD is shown by comparing 

its performance in terms of profit and fraction of accepted orders with those of PP-B and PP-

OA models. The numerical tests are carried out on problems with 𝑇 = 8 and 𝑁 = 15 for 

which optimal solutions are obtained using Xpress solver. Figure 2 shows the total amount of 

backorders when PP-B model is used. As can be noticed, as demand gets closer to or larger 

than the total available capacity, the total backorders increase rapidly. Though, from the sales 

perspective, accepting all orders certainly generates more revenue, the cost of backorders and 

excessive delays increases considerably resulting in a decrease in profits. This is depicted in 

Figure 3, which shows the total profit of the three models (PP-B, PP-OA, and PP-OA-FDD) 

as a function of the ratio Demand/Capacity (DC). It is interesting to notice how fast the profit 

is decreasing for model PP-B, though the revenue increases linearly with DC (as demand is 

increased). Between PP-OA and PP-OA-FDD (Δ𝑖 = 3) models, the effect of flexibility is 

more remarkable especially for higher DC values; for example, in the case of DC=1.2, the 

profit in PP-OA-FDD model is double the profit of PP-OA model. 

 

 

Figure 2. Backorders vs. capacity tightness 
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Figure 3. Total profit of the three models (Δi =3 in PP-OA-FDD) 

The increase in the profit of PP-OA-FDD is due to the increase in accepted orders as 

flexibility is introduced (See Figure 4 and Figure 5).  

 

 

Figure 4. Accepted orders with and without due date flexibility (Δi =3 in PP-OA-FDD) 

 

 

Figure 5. Fraction of accepted orders for PP-OA and PP-OA-FDD  

(Δ =1 corresponds to PP-OA model) 

6.3 Analysis of the performance of the heuristics 

The PP-OA-FDD model was solved using the time-based relax-and-fix heuristic and using 

order-based relax-and-fix heuristic (Algorithm 1). The parameters used for each heuristic are 

summarized in Table 1. The numerical experiments were carried on both small size and large 

size instances. The stopping criterion used in each iteration of the two heuristics is the 

minimum integrality gap, which is set to 0.1%.  

 

Table 1. Parameters of the heuristics 

0,6

0,7

0,8

0,9

1

1,1

0,6 0,7 0,8 0,9 1 1,1 1,2Fr
ac

ti
o

n
 o

f 
A

cc
e

p
te

d
 O

rd
e

rs

Demand/Capacity

PP-OA PP-OA-FDD

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

1 2 3 4 5 6

Fr
ac

ti
o

n
 o

f 
A

cc
e

p
te

d
 O

rd
e

rs

Δi

DC=0.6

DC=0.9

DC=1.2



 

16 

 

 Order-based heuristic Time-based heuristic 

 RF-N-10-8 RF-N-15-10 RF-T-5-3 RF-T-10-8 

𝛼 10 15 5 10 

𝛽 8 10 3 8 

Min integrality gap 0.1% 0.1% 0.1% 0.1% 

 

Preliminary tests were carried out on small size problems. In these problems there are 𝑁 = 20 

orders to be scheduled over a planning horizon of 𝑇 = 10 periods. Order time windows were 

set to Δ
𝑖

∈ {2, 4, 6} and capacity tightness was set to 𝐷𝐶 ∈ {0.6, 0.9, 1.2}. For each setting 

(given values of Δ
𝑖
 and 𝐷𝐶), five instances were randomly generated as mentioned in 

Section 6.1. The performance of the heuristics is measured using the gap between the optimal 

solution (𝑂𝑝𝑡) obtained using the solver and the heuristic solution (𝑆𝑜𝑙): 

𝐺𝑎𝑝 = 100 ×
𝑂𝑝𝑡 − 𝑆𝑜𝑙

𝑂𝑝𝑡
 

Table 2 shows the gaps obtained by the heuristics. The CPU times are shown on the last raw 

of the table. 

 

Table 2. Gaps and CPU times for small size problems (𝑇 = 10, 𝑁 = 20) 

 Parameter Value RF-N-10-8 RF-N-15-10 RF-T-5-3 RF-T-10-8 

Gap (%) Δ
𝑖
 2 1.09 0.36 0.46 0.00 

4 1.80 0.40 0.16 0.01 

6 2.02 0.39 0.19 0.01 

DC 0.6 0.14 0.15 0.06 0.02 

0.9 0.46 0.16 0.18 0,00 

1.2 4.30 0.84 0,57 0,00 

CPU (Seconds) 0.70 0.82 0.31 2.57 

 

The RF-T-10-8 heuristic outperforms all other heuristics in terms of quality of solutions. In 

fact, for some parameter settings it is able to find the optimal solutions for all the generated 

instances. However, it requires the largest CPU time on average when compared to other 

heuristics. Heuristic RF-T-5-3 might be considered as a good compromise between CPU time 

and solution quality. The solver on the other hand requires an average CPU time of 6.25 

seconds and a maximum CPU time of 900 Seconds (maximum allowed execution time) to 

find the optimum, while RF-T-10-8 heuristic requires an average time of 2.57 Seconds and a 

maximum time of 97 Seconds to reach an average gap of 0.01 %. 
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a) Full factorial tests 

In Table 3, the first and second columns correspond to the three problem parameters and their 

values based on which the analysis was done. Problem size is identified by the number of 

time periods in the planning horizon and the number of orders (T-N), which range from 10 to 

100 periods and from 20 to 500 orders. The execution time of the solver when applied directly 

to the PP-OA-FDD formulation was limited to 900 Seconds. The last six columns in Table 3 

present the average solution gap of two order-based relax-and-fix heuristics, two time-based 

relax-and-fix heuristics and the solver for a maximum CPU time of 900 Seconds (Column 

Solver 900s).  

Gap' = 100 ×
𝐵𝑒𝑠𝑡𝑈𝐵 − 𝑆𝑜𝑙

𝑆𝑜𝑙
 

Where 𝑆𝑜𝑙 is the solution obtained using the solution approach and 𝐵𝑒𝑠𝑡𝑈𝐵 is the best bound 

obtained using the solver. We also refer to Table 4 for a comparison of the average CPU 

times.  

 

As it can be expected, from Table 3, the solver provides better quality solutions than the 

heuristics for very small problems though it requires much more CPU times on average. For 

medium and large instances, the time-based relax-and-fix heuristics (RF-T-5-3 and RF-T-10-

8) outperform the solver in terms of solution quality while requiring much less CPU time. For 

example, for problems with (𝑇, 𝑁) = (100,200), the solver requires 630 seconds to reach an 

average gap of 4.05%, while RF-T-5-3 obtains solutions with an average gap of 1.99% in less 

than 12 Seconds on average. 

 

For problems with a large number of orders, the order-based relax-and-fix heuristics are 

slower than the time-based heuristics as the number of sequences to be evaluated becomes 

large. The main reason behind constructing and evaluating several sequences is to search for 

sequences that would result in good quality solutions; yet, it can be seen from Table 3 that 

order-based heuristics results in relatively higher gaps when compared to the solver and time-

based heuristics. Therefore, the time-based relaxed and fix heuristics are more suitable for 

solving this problem. 

It can also be seen from Table 5 that the more customer due date flexibility is allowed 

(increasing Δ
𝑖
) and the tighter is the capacity (increasing DC), the harder is the problem to 

solve. 
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Table 3. Gaps (%) between the best bound and the best solution of the heuristics 
  RF-N-10-8 RF-N-15-10 RF-T-5-3 RF-T-10-8 Solver900s 

T-N 10-20 1.63 0.38 0.27 0.01 0.00 

10-50 0.85 0.68 0.11 0.09 0.05 

20-40 1.94 1.47 0.55 0.51 0.35 

20-60 1.81 1.49 0.58 0.51 0.55 

10-100 0.96 0.83 0.14 0.15 0.09 

20-100 1.77 1.39 0.36 0.31 0.37 

50-100 3.74 3.21 1.59 1.44 2.58 

50-300 4.23 3.57 0.64 0.66 1.23 

100-200 5.68 5.01 1.99 1.89 4.05 

100-500 7.40 5.94 0.99 0.83 1.74 

 

Table 4. Average CPU time (in Seconds) for different problem sizes. 

T-N RF-N-10-8 RF-N-15-10 RF-T-5-3 RF-T-10-8 Solver900 

10-20 0.70 0.82 0.31 2.57 6.25 

10-50 1.01 1.02 3.20 18.32 159.56 

20-40 1.74 2.68 0.99 6.22 198.08 

20-60 2.28 2.63 1.81 11.84 295.79 

10-100 2.60 2.18 4.56 29.48 402.95 

20-100 3.21 3.02 4.26 18.24 426.13 

50-100 8.51 8.46 4.25 19.63 520.39 

50-300 43.61 32.64 12.68 28.94 601.06 

100-200 31.18 33.38 11.32 22.94 630.62 

100-500 144.75 133.80 11.19 26.19 602.48 

 

Table 5. Effect of Δ
𝑖
 and DC on Gaps  

  RF-N-10-8 RF-N-15-10 RF-T-5-3 RF-T-10-8 Solver900s 

Δ
𝑖
 2 3.18 2.24 0.54 0.37 0.44 

4 3.06 2.50 0.74 0.64 1.05 

8 3.69 3.25 1.12 1.11 2.09 

12 4.77 4.38 1.44 1.47 3.23 

DC 0.6 0.69 0.43 0.14 0.13 0.00 

0.9 2.30 1.82 0.54 0.38 0.49 

1.2 6.81 5.67 1.69 1.61 3.27 

 

7. Conclusion 

 Integrating production and sales decisions increases the competitiveness of 

manufacturing firms. In fact, by integrating production planning and order acceptance 

decisions companies can increase profit and in the same time customer satisfaction, by 
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controlling delays and reducing them. Furthermore, negotiating flexible due dates allows 

companies to accept more orders and quote more reliable due dates to their customers. In this 

paper, we have proposed a mathematical programming formulation to model the integrated 

problem of production planning with load-dependent lead times, order acceptance, and 

flexible due dates. We  quantified, through numerical experiments, the benefits of integration 

and due dates flexibility. For problems of realistic sizes, with a large number of planning 

periods and orders, the problem is very hard to solve in reasonable computational times. 

Therefore, two relax-and-fix heuristics have been developed to tackle this issue of 

dimensionality. Numerical results show that the time-based relax-and-fix heuristics 

outperform the order-based relax-and-fix heuristics and the direct application of a commercial 

solver as it provides better quality solutions in much less CPU times. Although the model 

presented in this paper considers more realistic behaviour of the capacity constraints, it still 

needs further improvements by considering other important issues related to production 

planning decisions such as setup costs, setup times and multi-products. Furthermore, faster 

solution approaches, which do not rely on the solution on integer linear programming 

problems need to be tackled and are currently under investigation. 
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