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Abstract The FOCUS constraint expresses the notion that solutions are concentrated.
In practice, this constraint suffers from the rigidity of its semantics. To tackle this is-
sue, we propose three generalizations of the FOCUS constraint. We provide for each
one a complete filtering algorithm. Moreover, we propose ILP and CSP decomposi-
tions.

1 Introduction

Many discrete optimization problems have constraints on the objective function. Be-
ing able to represent such constraints is fundamental to deal with many real world
industrial problems. Constraint programming is a rich paradigm to express and filter
such constraints. In particular, several constraints have been proposed for obtaining
well-balanced solutions [9,17,11]. Recently, the FOCUS constraint [12] was intro-
duced to express the opposite notion. It captures the concept of concentrating the
high values in a sequence of variables to a small number of intervals. We recall its
definition. Throughout this paper, X = [x0, x1, . . . , xn−1] is a sequence of integer
variables and si,j is a sequence of indices of consecutive variables in X , such that
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si,j = [i, i + 1, . . . , j], 0 ≤ i ≤ j < n. For each variable x, we denote by D(x) the
domain of x and finally, we let |E| be the size of a collection E.

Definition 1 ([12]) Let yc be a variable. Let k and len be two integers, 1 ≤ len ≤
|X|. An instantiation of X ∪ {yc} satisfies FOCUS(X, yc , len, k ) iff there exists a set
SX of disjoint sequences of indices si,j such that three conditions are all satisfied:

1. |SX | ≤ yc
2. ∀xl ∈ X , xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX , j − i+ 1 ≤ len

Example 1 Let k = 0, D(yc) = {2}, X = [x0, .., x5], D(x0) = {1}, D(x1) = {3},
D(x2) = {1}, D(x3) = {0}, D(x4) = {1}, D(x5) = {0}. If len = 6, then
FOCUS(X, yc , len, k ) is satisfied since we can have 2 disjoint sequences of length
≤ 6 of consecutive variables with a value strictly positive, i.e., 〈x0, x1, x2〉, and 〈x4〉.
If len = 2, FOCUS(X, yc , len, k ) becomes violated since it is impossible to include
all the strictly positive variables in X with only 2 sequences of length ≤ 2.

FOCUS can be used in various contexts including cumulative scheduling problems
where some excesses of capacity can be tolerated to obtain a solution [12]. In a cumu-
lative scheduling problem, we are scheduling activities, and each activity consumes a
certain amount of some resource. The total quantity of the resource available is lim-
ited by a capacity. Excesses can be represented by variables [4]. In practice, excesses
might be tolerated by, for example, renting a new machine to produce more resource.
Suppose the rental price decreases proportionally to its duration: it is cheaper to rent
a machine during a single interval than to make several rentals. On the other hand,
rental intervals have generally a maximum possible duration. FOCUS can be set to
concentrate (non null) excesses in a small number of intervals, each of length at most
len .

Unfortunately, the usefulness of FOCUS is hindered by the rigidity of its seman-
tics. For example, we might be able to rent a machine from Monday to Sunday but
not use it on Friday. It is a pity to miss such a solution with a smaller number of
rental intervals because FOCUS imposes that all the variables within each rental in-
terval take a high value. Moreover, a solution with one rental interval of two days is
better than a solution with a rental interval of four days. Unfortunately, FOCUS only
considers the number of disjoint sequences, and does not consider their length.

Consider a simple example of a resource R with a capacity equal to 3. We use a
sequence of variables [x0, .., x9] to model the amount of consumed capacity at time
unit i (e.g., one day). Suppose that some activities are already scheduled on R such
that the current assignment of [x0, .., x9] is:

[x0, .., x9]: 4 2 4 2 2 0 0 0 0 0

In this example, the first day requires a capacity equal to 4, the second requires 2, etc.
The standard capacity constraints are exceeded in x0 and x2.
Suppose that an additional activity has to be scheduled on this resource. The new
activity has a duration of 5 days, each of which consumes 2 units of capacity. The
followings sequence (denoted S1) shows the new resource consumption if we start
the new activity at x1.The red values show the new capacity requirement after adding
the new activity.
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[x0, .., x9] 4 4 6 4 4 2 0 0 0 0

The new sequence S1 satisfies FOCUS(X, [1, 1], 5, 3) since we have only one sub-
sequence where the capacity constraints are all exceeded (i.e. 〈x0, x1, x2, x3, x4〉).
However, there is no possible way to satisfy the constraint if the length is equal to 3.
FOCUS(X, [1, 1], 3, 3) is violated.
Consider now a form of relaxation by allowing some variables in the sub-sequences
to have values that do not exceed capacity. In this case, a solution is possible if we
start the additional activity at x5 (denoted S2). That is:

[x0, .., x9]: 4 2 4 2 2 2 2 2 2 2

The unique subsequence in S2 where some capacity constraints are exceeded is
〈x0, x1, x2〉. Relaxing FOCUS in this sense might be very useful in practice.
Consider now again FOCUS(X, [2, 2], 5, 3). The two solutions S1 and S2 satisfy the
constraint. Notice that there is 6 capacity excesses in S1 (i.e., in x0, x1, x2, x3, x4)
and only 2 in S2 (i.e., in x0 and x2). Therefore, one might prefer S2 since we have less
capacity excesses although the project ends later. Restricting the length subsequences
to be at most 2 in this example will prune the first solution.

We tackle those issues in this paper by means of three generalizations of FOCUS.
SPRINGYFOCUS tolerates within each sequence si,j ∈ SX some values v ≤ k . To
keep the semantics of grouping high values, their number is limited in each si,j by
an integer argument. WEIGHTEDFOCUS adds a variable to count the length of se-
quences, equal to the number of variables taking a value v > k . The most generic
one, WEIGHTEDSPRINGYFOCUS, combines the semantics of SPRINGYFOCUS and
WEIGHTEDFOCUS. Propagating such constraints, i.e. complementary to an objective
function, is well-known to be important [10,18]. We present and experiment with
filtering algorithms and decompositions therefore for each constraint. One of the de-
compositions highlights a relation between SPRINGYFOCUS and a tractable Integer
Linear Programming (ILP) problem.

The rest of this paper is organized as follows : We give in Section 2 a short back-
ground on Constraint Programming and Network Flows. Next, in Sections 3, 4 and 5,
we present three generations of the FOCUS constraint (denoted by SPRINGYFOCUS,
WEIGHTEDFOCUS, and WEIGHTEDSPRINGYFOCUS respectively). In particular, we
provide complete filtering algorithms as well as ILP formulations and CSP decom-
positions. Finally, we evaluate, in Section 6, the impact of the new filtering compared
to decompositions.

2 Background

A constraint satisfaction problem (CSP) is defined by a set of variables, each with a
finite domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. For each variable x, we denote by min(x) (respec-
tively max(x)) the minimum (respectively maximum) value in D(x). Given a con-
straint C, we denote by Scope(C) the set of variables constrained by C. A solution is
an assignment of values to the variables satisfying the constraints.
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Constraint solvers typically explore partial assignments enforcing a local consis-
tency property using either specialized or general purpose filtering algorithms [16]. A
filtering algorithm (called also a propagator) is usually associated with one constraint,
to remove values that cannot belong to an assignment satisfying this constraint. A lo-
cal consistency formally characterizes the impact of filtering algorithms. The two
most used local consistencies are domain consistency (DC) and bound consistency
(BC). A support for a constraint C is a tuple that assigns a value to each variable
in Scope(C) from its domain which satisfies C. A bounds support for a constraint
C is a tuple that assigns a value to each variable in Scope(C) which is between the
maximum and minimum in its domain which satisfies C. A constraint C is domain
consistent (DC) if and only if for each variable xi ∈Scope(C), every value in the cur-
rent domain of xi belongs to a support. A constraint C is bounds consistent (BC) if
and only if for each variable xi ∈Scope(C), there is a bounds support for the maxi-
mum and minimum value in its current domain. A CSP is DC/BC if and only if each
constraint is DC/BC. Regarding FOCUS, a complete filtering algorithm (i.e. achieving
domain consistency) is proposed in [12] running in O(n) time complexity.

A flow network is a weighted directed graph G = (V,E) where each edge e has
a capacity between non-negative integers l(e) and u(e), and an integer cost w(e). A
feasible flow in a flow network between a source (s) and a sink (t), (s, t)-flow, is a
function f : E → Z+ satisfying two conditions: f(e) ∈ [l(e), u(e)], ∀e ∈ E and
the flow conservation law that ensures that the amount of incoming flow should be
equal to the amount of outgoing flow for all nodes except the source and the sink. The
value of a (s, t)-flow is the amount of flow leaving the sink s. The cost of a flow f is
w(f) =

∑
e∈E w(e)f(e). A minimum cost flow is a feasible flow with the minimum

cost [1].

3 Springy FOCUS

3.1 Definition

In Definition 1, each sequence in SX contains exclusively values v > k. In many
practical cases, this property is too strong.

Consider one simple instance of the problem in the introduction (depicted in Fig-
ure 1) for a given resource of capacity 3. Each variable xi ∈ X represents the resource
consumption and is defined per unit of time (e.g., one day). Initially, 4 activities are
fixed (drawing A) as follows:

1. Activity 1 starts at day 0 and requires 4 units of capacity during one day
2. Activity 2 starts at day 1 and requires 2 units of capacity during one day
3. Activity 3 starts at day 2 and requires 4 units of capacity during one day
4. Activity 4 starts at day 3 and requires 2 units of capacity during two days

Suppose now that an additional activity with 2 units of capacity and a duration
of 5 days remains to be scheduled. Suppose also that the domain of the starting time
of the new activity is D(st) = [1, 5]. If FOCUS(X, yc = 1, 5, 3) is imposed then this
activity must start at day 1 (solution B). We have one 5 day rental interval.
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Fig. 1 Introducing SPRINGYFOCUS
Example of a resource with capacity equal to 3. Each day is represented by one unit in the horizontal
axis. The capacity usage is represented by the vertical axis. (A) Problem with 4 fixed activities: activity 1
scheduled on day 0 with 4 units of capacity; activity 2 scheduled on day 1 with 2 units of capacity; activity
3 scheduled on day 2 with 4 units of capacity; and activity 4 scheduled on days 3 and 4 with 2 units
of capacity each. An additional activity of length 5 should start from time 1 to 5 (i.e. the domain of the
starting time of the new activity is D(st)=[1,5]). (B) Solution satisfying FOCUS(X, [1, 1], 5, 3), with a new
machine rented for 5 days. (C) Practical solution violating FOCUS(X, [1, 1], 5, 3), with a new machine
rented for 3 days but not used on the second day.

Assume now that the new machine may not be used every day. Solution (C) gives
one rental of 3 days instead of 5. Furthermore, if len = 4 the problem will have
no solution using FOCUS, while this latter solution still exists in practice. This is
paradoxical, as relaxing the condition that sequences in the set SX of Definition 1
take only values v > k deteriorates the concentration power of the constraint. There-
fore, we propose a soft relaxation of FOCUS, where at most h values less than k are
tolerated within each sequence in SX .

Definition 2 Let yc be a variable and k , len , h be three integers, 1 ≤ len ≤ |X|, 0≤
h < len−1. An instantiation ofX∪{yc} satisfies SPRINGYFOCUS(X, yc , len, h, k )
iff there exists a set SX of disjoint sequences of indices si,j such that four conditions
are all satisfied:

1. |SX | ≤ yc
2. ∀xl ∈ X , xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX , j − i+ 1 ≤ len , xi > k and xj > k.
4. ∀si,j ∈ SX , |{l ∈ si,j , xl ≤ k}| ≤ h

3.2 Filtering Algorithm

Bounds consistency (BC) on SPRINGYFOCUS is equivalent to domain consistency:
any solution can be turned into a solution that only uses the lower bound min(xl) or
the upper bound max(xl) of the domain D(xl) of each xl ∈ X (this observation was
made for FOCUS [12]). Thus, we propose a BC algorithm. The first step is to traverse
X from x0 to xn−1, to compute the minimum possible number of disjoint sequences
in SX (a lower bound for yc), the focus cardinality, denoted fc(X). We give a formal
definition.

Definition 3 Focus cardinality
Let X be a sequence of variables subject to SPRINGYFOCUS(X, yc , len, h, k ). The
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focus cardinality of any subsequence s ⊂ X , denoted fc(s), is defined as follows:

fc(s) = min
ω∈D(yc)

{SPRINGYFOCUS(s, yc
ω, len, h, k) is satisfiable | D(yc

ω) = {ω}}

Definition 4 Given xl ∈ X , we consider three quantities.

1. p(xl, v≤) is the focus cardinality of [x0, x1, . . . , xl], assuming xl ≤ k , and
∀si,j ∈ S[x0,x1,...,xl], j 6= l.

2. pS(xl, v≤), 0 < l < n− 1, is the focus cardinality of [x0, x1, . . . , xj ], where l <
j < n, assuming xl ≤ k and ∃i, 0 ≤ i < l, si,j ∈ S[x0,x1,...,xj ]. pS(x0, v≤) =
pS(xn−1, v≤) = n+ 1.

3. p(xl, v>) is the focus cardinality of [x0, x1, . . . , xl] assuming xl > k .

Any quantity is equal to n + 1 if the domain D(xl) of xl makes impossible the
considered assumption.

We shall use the above notations throughout the paper.

Property 1 fc(X) = min(p(xn−1, v≤), p(xn−1, v>)).

Proof By construction from Definitions 2 and 4. ut

To compute the quantities of Definition 4 for xl ∈ X we use two additional
measures.

Definition 5 plen(xl) is the minimum length of a sequence in S[x0,x1,...,xl] contain-
ing xl among instantiations of [x0, x1, . . . , xl] where the number of sequences is
fc([x0, x1, . . . , xl]). plen(xl)=0 if ∀si,j ∈ S[x0,x1,...,xl], j 6= l.

Definition 6 card(xl) is the minimum number of values v ≤ k in the current se-
quence in S[x0,x1,...,xl], equal to 0 if ∀si,j ∈ S[x0,x1,...,xl], j 6= l. card(xl) assumes
that xl > k. It has to be decreased it by one if xl ≤ k.

Proofs of following recursive Lemmas 1 to 4 omit the obvious cases where quan-
tities take the default value n+ 1.

Lemma 1 (initialization) p(x0, v≤) = 0 if min(x0) ≤ k, and n + 1 otherwise;
pS(x0, v≤) = n+ 1; p(x0, v>) = 1 if max(x0) > k and n+ 1 otherwise; plen(x0)
= 1 if max(x0) > k and 0 otherwise; card(x0) = 0.

Proof From item 4 of Definition 2, a sequence in SX cannot start with a value v ≤ k.
Thus, pS(x0, v≤) = n + 1 and card(x0) = 0. If x0 can take a value v > k then by
Definition 4, p(x0, v>) = 1 and plen(x0) = 1. ut

We now consider a variable xl ∈ X , 0 < l < n.

Lemma 2 (p(xl, v≤)) If min(xl) ≤ k then p(xl, v≤) =
min(p(xl−1, v≤), p(xl−1, v>)), else p(xl, v≤) = n+ 1.
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Proof If min(xl) ≤ k then pS(xl−1, v≤) must not be considered: it would imply
that a sequence in SX ends by a value v ≤ k for xl−1. From Property 1, the focus
cardinality of the previous sequence is min(p(xl−1, v≤), p(xl−1, v>)). ut

Lemma 3 (pS(xl, v≤)) If min(xi) > k, pS(xi, v≤) = n+ 1.
Otherwise, if plen(xi−1) ∈ {0, len − 1, len} ∨ card(xi−1) = h then pS(xi, v≤) =
n+ 1, else pS(xi, v≤) = min(pS(xi−1, v≤), p(xi−1, v>)).

Proof If min(xi) ≤ k we have three cases to consider. (1) If either plen(xi−1) = 0
or plen(xi−1) = len then from item 3 of Definition 2 a sequence in SX cannot start
with a value vi ≤ k: pS(xi, v≤) = n + 1. (2) If plen(xi−1) = len − 1 then from
Definition 2 the current variable xi cannot end the sequence with a value vi ≤ k. (3)
Otherwise, from item 3 of Definition 2, p(xi−1, v≤) is not considered. Thus, from
Property 1, pS(xi, v≤) = min(pS(xi−1, v≤), p(xi−1, v>)). ut

Lemma 4 (p(xl, v>)) If max(xl) ≤ k then p(xl, v>)=n+ 1.
Otherwise, If plen(xl−1)∈ {0, len}, p(xl, v>) = min(p(xl−1, v>)+1, p(xl−1, v≤)+
1), else p(xl, v>) = min(p(xl−1, v>), pS(xl−1, v≤), p(xl−1, v≤) + 1).

Proof If plen(xl−1) ∈ {0, len} a new sequence has to be considered: pS(xl−1, v≤)
must not be considered, from item 3 of Definition 2. Thus, p(xl, v>) =
min(p(xl−1, v>) + 1, p(xl−1, v≤) + 1). Otherwise, either a new sequence has to
be considered (p(xl−1, v≤) + 1) or the value is equal to the focus cardinality of the
previous sequence ending in xl−1. ut

Proposition 1 (plen(xl)) If min (pS(xl−1, v≤), p(xl−1, v>)) < p(xl−1, v≤) + 1 ∧
plen (xl−1)< len then plen(xl) = plen(xl−1)+1. Otherwise, if p(xl, v>)) < n+1
then plen(xl) = 1, else plen(xl) = 0.

Proof By construction from Definition 5 and Lemmas 1, 2, 3 and 4. ut

Proposition 2 (card(xl)) If plen(xl) = 1 then card(xl) = 0. Otherwise, if
p(xl, v>) = n+ 1 then card(xl) = card(xl−1) + 1, else card(xl) = card(xl−1).

Proof By construction from Definition 5, 6 and Lemmas 1 and 4. ut

Algorithm 1 implements the lemmas with pre[l][0][0] = p(xl, v≤), pre[l][0][1] =
pS(xl, v≤), pre[l][1] = p(xl, v>), pre[l][2] = plen(xl), pre[l][3] = card(xl).

The principle of Algorithm 2 is the following. First, lb = fc(X) is computed with
xn−1. We execute Algorithm 1 from x0 to xn−1 and conversely (arrays pre and suf ).
We thus have for each quantity two values for each variable xl. To aggregate them, we
implement regret mechanisms directly derived from Propositions 1 and 2, according
to the parameters len and h . Line 4 is optional but it avoids some work when the
variable yc is fixed, thanks to the same property as FOCUS (see [12]). Algorithm 2
performs a constant number of traversals of the set X . Its time complexity is O(n),
which is optimal.
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Algorithm 1: MINCARDS(X, len, k , h): Integer matrix
1 pre := new Integer[|X|][4][] ;
2 for l ∈ 0..n− 1 do
3 pre[l][0] := new Integer[2];

/* Initialization from Lemma 1 */
4 if min(x0) ≤ k then
5 pre[0][0][0] := 0 ;
6 else
7 pre[0][0][0] := n+ 1 ;
8 pre[0][0][1] := n+ 1 ;
9 if max(x0) > k then

10 pre[0][1] := 1 ;
11 else
12 pre[0][1] := n+ 1 ;
13 if max(x0) > k then
14 pre[0][2] := 1 ;
15 else
16 pre[0][2] := 0 ;
17 pre[0][3] := 0 ;
18 for l ∈ 1..n− 1 do

/* Lemma 2 */
19 if min(xl) ≤ k then
20 pre[l][0][0] := min(pre[l − 1][0][0], pre[l − 1][1]) ;
21 else
22 pre[l][0][0] := n+ 1 ;

/* Lemma 3 */
23 if min(xl) > k then
24 pre[l][0][1] := n+ 1 ;
25 else
26 if pre[l − 1][2] ∈ {0, len − 1, len} ∨ pre[l − 1][3] = h then
27 pre[l][0][1] := n+ 1 ;
28 else
29 pre[l][0][1] := min(pre[l − 1][0][1], pre[i− 1][0][0]) ;

/* Lemma 4 */
30 if max(xl) ≤ k then
31 pre[l][1] := n+ 1 ;
32 else
33 if pre[l − 1][2] ∈ {0, len} then
34 pre[l][1] = min(pre[l − 1][1] + 1, pre[l − 1][0][0] + 1) ;
35 else
36 pre[l][1] = min(pre[l − 1][1], pre[l − 1][0][1], pre[l − 1][0][0] + 1)

/* Proposition 1 */
37 if min (pre[l − 1][0][1], pre[l − 1][1]) < pre[l − 1][0][0] + 1 ∧ pre[l − 1][2] < len then
38 pre[l][2] = pre[l − 1][2] + 1 ;
39 else
40 if pre[l][1] < n+ 1 then
41 pre[l][2] := 1 ;
42 else
43 pre[l][2] := 0 ;

/* Proposition 2 */
44 if pre[l][2] = 1 then
45 pre[l][3] := 0 ;
46 else
47 if pre[l][1] = n+ 1 then
48 pre[l][3]) := pre[l − 1] + 1;
49 else
50 pre[l][3]) := pre[l − 1] ;
51 return pre;
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Algorithm 2: FILTERING(X, yc , len, k , h): Set of variables
1 pre := MINCARDS(X, len, k, h) ;
2 Integer lb := min(pre[n− 1][0][0], pre[n− 1][1]);
3 if min(yc) < lb then D(yc) := D(yc) \ [min(yc), lb[ ;
4 if min(yc) = max(yc) then
5 suf := MINCARDS([xn−1, xn−2, . . . , x0], len, k, h) ;
6 for l ∈ 0..n− 1 do
7 if pre[l][0][0] + suf [n− 1− l][0][0] > max(yc) then
8 Integer regret := 0; Integer add := 0;
9 if pre[l][1] ≤ pre[l][0][1] then add := add + 1 ;

10 if suf [n− 1− l][1] ≤ suf [n− 1− l][0][1] then add:=add+1 ;
11 if pre[l][2] + suf [n− 1− l][2]− 1 ≤ len ∧

pre[l][3] + suf [n− 1− l][3] + add− 1 ≤ h then regret := 1 ;
12 if pre[l][0][1] + suf [n− 1− l][0][1]− regret > max(yc) then D(xi) :=

D(xi)\ [min(xi), k] ;
13 Integer regret := 0;
14 if pre[l][2] + suf [n− 1− l][2]− 1 ≤ len ∧ pre[l][3] + suf [n− 1− l][3]− 1 ≤ h

then regret := 1 ;
15 if pre[l][1] + suf [n− 1− l][1]− regret > max(yc) then
16 D(xi) := D(xi)\ ]k,max(xi)];
17 return X ∪ {yc};

3.3 Integer Linear Programming formulation

In this section we present a new Integer Linear Programming (ILP) formulation of
SPRINGYFOCUS. This connection highlights a relation between SPRINGYFOCUS
and a tractable ILP problem. It adds one more constraint to a bag of constraints that
can be propagated using shortest path or network flow reformulations [13,14,6].

We first present a bounds disentailment technique. We use the following notations
from [12].

Definition 7 ([12]) Given an integer k , a variable xl ∈ X is:

– Penalizing, (Pk ), iff min(xl) > k.
– Neutral, (Nk ), iff max(xl) ≤ k.
– Undetermined, (Uk ), otherwise.

We say xl ∈ Pk iff xl is labelled Pk, and similarly for Uk and Nk.

The main observation behind the reformulation is that we can relax the require-
ment of disjointness of sequences in SX (Definition 2) and find a solution of the
SPRINGYFOCUS constraint. This solution can be transformed into a solution where
sequences in SX are disjoint as we can truncate the overlaps. If we drop the require-
ment of disjointness of sequences in SX then we only need to consider at most n pos-
sible sequences si,i+leni−1, i ∈ {0, 1, . . . , n − 1}, xi and xi+leni−1 are not neutral,
and leni is the maximal possible length of a sequence that starts at the ith position.
Note that leni does not have to be equal to len as si,i+leni−1 can cover at most h
variables that take values less than or equal to k. We call the set of these sequences
So
X .
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Fig. 2 The set of possible sequences in SX from Example 2.

Example 2 Consider X = [x0, x1 . . . , x8] and SPRINGYFOCUS(X, [3, 3], 3, 1, 0)
with D(x0) = D(x2) = D(x5) = D(x7) = D(x8) = {1}, D(x1) = D(x3) =
D(x4) = 0 and D(x6) = {0, 1}. There are 9 sequences to consider as there are
9 variables. We have 5 valid sequences that are schematically shown in black in
Figure 2(a). Hence, So

X = {s0,2, s5,7, s6,8, s7,8, s8,8}. The remaining 4 sequences,
s1,2, s2,3, s3,3 and s4,6, are discarded, as a sequence should not start(finish) at a neu-
tral variable. We highlighted invalid sequences in grey.

We denote the SPRINGYFOCUS constraint without the disjointness requirement
SPRINGYFOCUSOVERLAP. More formally we define SPRINGYFOCUSOVERLAP as
follows.

Definition 8 Let yc be a variable and k , len , h be three integers, 1 ≤
len ≤ |X|, 0 ≤ h < len − 1. An instantiation of X ∪ {yc} satisfies
SPRINGYFOCUSOVERLAP(X, yc , len, h, k ) iff there exists a set SX ⊆ So

X of se-
quences (not necessary disjoint) of indices si,j such that four conditions are all satis-
fied:

1. |SX | ≤ yc
2. ∀xl ∈ X , xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j
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3. ∀si,j ∈ SX , j − i+ 1 ≤ len , xi > k and xj > k
4. ∀si,j ∈ SX , |{l ∈ si,j , xl ≤ k}| ≤ h

Lemma 5 SPRINGYFOCUS(X, yc , len, h, k) has a solution iff
SPRINGYFOCUSOVERLAP(X, yc , len, h, k) has a solution.

Proof ⇐ Let I[X ∪ {yc}] be a solution of SPRINGYFOCUSOVERLAP. We order se-
quences in SX by their starting points and process them in this order. Let si,i+leni−1
and sj,j+lenj−1 be the first two consecutive sequences in SX that overlap. We up-
date SX . First, we remove sj,j+lenj−1: SX = SX \ {sj,j+lenj−1}. Consider a se-
quence si+leni,j+lenj−1. By definition, xj+lenj−1 > k . If si+leni,j+lenj−1 has a
prefix that contains only neutral variables then we cut it from the sequence and ob-
tain si′,j+lenj−1. We add this sequence to our set: SX = SX ∪{si′,j+lenj−1}. So, we
cut the prefix of sj,j+lenj−1 to avoid the overlap and made sure that the new sequence
does not start or end at a neutral variable. This does not change the cardinality |SX |.
We continue this procedure for the rest of the sequences. The updated set SX covers
the same set of penalizing variables as the original set and all sequences are disjoint.
⇒ Let I[X∪{yc}] be a solution of SPRINGYFOCUS. We extend each sequence to

its maximal length to the right. This gives a solution of SPRINGYFOCUSOVERLAP.
ut

Example 3 Consider SPRINGYFOCUSOVERLAP from Example 2. SX =
{s0,2, s5,7, s7,8} is a possible solution (dashed lines in Figure 2(a)). We
can cut the prefix of s7,8 to avoid an overlap between s5,7 and s7,8. We
obtain s8,8 which does not start or finish at a neutral variable. Hence,
SX = (SX ∪ {s8,8}) \ {s7,8} = {s0,2, s5,7, s8,8}.

Thanks to Lemma 5 we build an ILP reformulation for
SPRINGYFOCUSOVERLAP, solve this ILP and transform to a solution of the
SPRINGYFOCUS constraint. We introduce one Boolean variable svi for each
sequence in So

X . We can write an integer linear program:

Minimize
∑

i:si,i+leni
∈So

X

svi (1)

∑
{svi:xj∈si,i+leni−1}

svi ≥ 1 ∀xj ∈ Pk (2)

svi ∈ {0, 1} ∀svi. (3)

Lemma 6 SPRINGYFOCUSOVERLAP(X, yc , len, h, k) is satisfiable iff the ILP sys-
tem 1–3 has a solution of cost less than or equal to max(yc).

Proof ⇐ Suppose the system described by Equations 1–3 has a solution I[sv]. We
define S = {si,i+leni

|svi = 1}. Equation 2 ensures that at least one sequence covers
a penalizing variable. Equation 1 ensures that the number of selected sequences is at
most max(yc).

As the rest of uncovered variables in X are undetermined or neutral variables, we
can construct an assignment based on SX . We set all undetermined variables covered
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by SX to 1 and all undetermined variables uncovered by SX to 0. This assignment
clearly satisfies SPRINGYFOCUSOVERLAP(X, yc , len, h, k).
⇒ Suppose there is a solution of the SPRINGYFOCUSOVERLAP(X, yc , len, h, k)

constraint I[X ∪ {yc}] and SX = {si1,j1 , . . . , sip,jp} be the set of corresponding
sequences. We set variable svi to 1 iff si,i+leni−1 ∈ SX . This assignment satisfies
Equations 1–3. ut

Next we note that the ILP system 1–3 has the consecutive ones properties on
columns. This means that the corresponding matrix can be transformed to a network
flow matrix using a procedure described by Veinott and Wagner [20]. We consider the
transformation on SPRINGYFOCUS from Example 5. This transformation is similar
to the one used to propagate the SEQUENCE constraint [6].

Example 4 Consider SPRINGYFOCUS from Example 2. We build an ILP that corre-
sponds to an equivalent SPRINGYFOCUSOVERLAP constraint using Equations 1–3.
Note that we do not introduce variables sv1, sv2, sv3 and sv4 for discarded sequences
s1,3, s2,3, s3,3 and s4,6 :

Minimize
∑

i∈{0,5,6,7,8}

svi (4)

sv0 ≥ 1 (5)
sv5 ≥ 1 (6)

sv5 + sv6 + sv7 ≥ 1, (7)
sv6 + sv7 + sv8 ≥ 1, (8)

where svi ∈ {0, 1}. By introducing surplus/slack variables, zi, we convert this to a
set of equalities:

Minimize
∑

i∈{0,5,6,7,8}

svi (9)

sv0 − z0 = 1 (10)
sv5 − z1 = 1 (11)

sv5 + sv6 + sv7 − z2 = 1, (12)
sv6 + sv7 + sv8 − z3 = 1, (13)

In matrix form, this is:


1 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 −1 0 0
0 1 1 1 0 0 0 −1 0
0 0 1 1 1 0 0 0 −1





sv0
...
sv8
z0
...
z3


=

1
...
1


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We append a row of zeros to the matrix and subtract the ith row from i+ 1th row for
i = 1 to 4. These operations do not change the set of solutions. This gives:


1 0 0 0 0 −1 0 0 0
−1 1 0 0 0 1 −1 0 0
0 0 1 1 0 0 1 −1 0
0 −1 0 0 1 0 0 1 −1
0 0 −1 −1 −1 0 0 0 1





sv0
...
sv8
z0
...
z3


=


1
0
0
0
0
−1


The corresponding network flow graph is shown in Figure 2(b). The dashed arcs have
cost zero and solid arcs have cost one. Capacities are shown on arcs. We number
nodes from 0 to 4 as we have 4 equations in the transformed ILP. We highlighted
in grey a possible solution of cost 3. This solution corresponds to the solution from
Example 3.

As the right hand side (RHS) of the ILP system 1–2 is a unit vector, the RHS in
the transformed ILP is a vector (1, 0, . . . , 0,−1). In other words, we need to consume
one unit of flow that enters the first node in the graph and leaves the last node in the
graph. Hence, the problem of finding a min cost flow is equivalent to the problem of
finding a shortest path in this graph from 0th to mth node, where m is the number of
equations in ILP. Moreover, a shortest path can be found in linear time.

Lemma 7 Let G be a directed graph that corresponds to the
SPRINGYFOCUS(X, yc , len, h, k). A shortest path from 0th to mth node can
be found in O(n) time.

Proof We show that there exists a shortest path from 0th to mth node that does not
contain arcs (i + 1, i), i ∈ {0, 1, . . . ,m − 1}. We call these arcs backward arcs and
call the remaining arcs – forward arcs.

First, we observe that each node in G has an outgoing arc, because the ith node,
i ∈ {0, . . . ,m− 1} corresponds to the ith penalizing variable in the constraint and a
sequence that starts at a penalizing variable is in So

X .
Let π be a shortest path from 0 to m node that uses a backward arc.

Consider the first occurrence of a sequence of backward arcs in π: π =
(0, . . . , j, i′, . . . , i, g, f, . . . ,m), where i′, . . . , i is a path using only backward arcs.
As (i, g) is present in G then (i′, g′), g ≤ g′ is present in G. Hence, we can modify
the path π to π = (0, . . . , j, i′, g′, π′, f, . . . ,m), where (g′, π′, f) is a path that uses
backward arcs to reach f from g′ if (g′, f) /∈ G. As the weight π′ is 0, the weight of
the updated path π is the same as the weight of the original path. Then we apply the
same argument to g′ and so on.

Hence, we can use a simple greedy algorithm to find the shortest path. We start at
the 0th node and select the longest outgoing arc (0, i). In the node i, we again select
the longest arc until will reach the mth node. As we know that there exists a shortest
path that only uses forward arcs the greedy algorithm is optimal. ut
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The same ILP reformulation can be done for the FOCUS constraint [12], which
is a special case of SPRINGYFOCUS. For these two constraints, we can use such a
bounds disentailment procedure to obtain aO(n2) filtering algorithm by successively
applying the program to the two bounds of the domain of each variable in X .

4 Weighted FOCUS

We present WEIGHTEDFOCUS, that extends FOCUS with a variable zc limiting the
the sum of lengths of all the sequences in SX , i.e., the number of variables covered
by a sequence in SX .

4.1 Definition

Fig. 3 The same initial configuration of Figure 1 (A) Problem with 4 fixed activities and one activity of
length 5 that can start from time 3 to 5 (i.e., D(st)=[3,5]). We assume D(yc) = {2}, len = 3 and k = 0.
(B) Solution satisfying WEIGHTEDFOCUS with zc = 4. (C) Solution satisfying WEIGHTEDFOCUS with
zc = 2.

WEIGHTEDFOCUS distinguishes between solutions that are equivalent with re-
spect to the number of sequences in SX but not with respect to their length, as Fig-
ure 3 shows.

Definition 9 Let yc and zc be two integer variables and k , len be two inte-
gers, such that 1 ≤ len ≤ |X|. An instantiation of X ∪ {yc} ∪ {zc} satisfies
WEIGHTEDFOCUS(X, yc , len, k , zc) iff there exists a set SX of disjoint sequences
of indices si,j such that four conditions are all satisfied:

1. |SX | ≤ yc
2. ∀xl ∈ X , xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX , j − i+ 1 ≤ len
4.

∑
si,j∈SX

|si,j | ≤ zc .

It should be noted that there are some similarities between WEIGHTEDFOCUS
and STRETCH [8]. Indeed given a sequence of variables, the STRETCH con-
straint restricts the occurrences of consecutive identical values. The particular case
of WEIGHTEDFOCUS with Boolean variables is similar to a very specific case of
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STRETCH with Boolean variables, where only the occurrences of consecutive 1s is
bounded. However, STRETCH does not restrict the number of such subsequences.
Even though, the semantics behind STRETCH is quite different as the limitation
of consecutive values is usually for many values along with many patterns whereas
in WEIGHTEDFOCUS the restriction in only for values greater than a threshold.
One limitation of WEIGHTEDFOCUS compared to STRETCH is that we do not re-
strict the minimum size of subsequences with excess. Another limitation is the non-
penalization of the extra resource consumption at each unit of time. That is, if k = 2,
then excess of type x = 10 might be very costly compared to two excess of the type
x = 5.

4.2 Filtering Algorithm

Dynamic Programming (DP) Principle Given a partial instantiation IX of X and
a set of sequences SX that covers all penalizing variables in IX , we consider
two terms: the number of variables in Pk and the number of undetermined vari-
ables, in Uk, covered by SX . We want to find a set SX that minimizes the sec-
ond term. Given a sequence of variables si,j , the cost cst(si,j) is defined as
cst(si,j) = |{p|xp ∈ Uk, xp ∈ si,j}|. We denote cost of SX , cst(SX), the sum
cst(SX) =

∑
si,j∈SX

cst(si,j). Given IX we consider |Pk| = |{xi ∈ Pk}|. We
have:

∑
si,j∈S |si,j | =

∑
si,j∈S cst(si,j) + |Pk|.

We start with explaining the main difficulty in building a propagator for
WEIGHTEDFOCUS. The constraint has two optimization variables in its scope (i.e.
yc and zc) and we might not have a solution that optimizes both variables simultane-
ously.

Example 5 Consider the set X = [x0, x1, . . . , x5] with domains
[1, {0, 1}, 1, 1, {0, 1}, 1] and WEIGHTEDFOCUS(X, [2, 3], 3, 0, [0, 6]), solution
SX = {s0,2, s3,5}, zc = 6, minimizes yc = 2, while solution SX = {s0,1, s2,3, s5,5},
yc = 3, minimizes zc = 4.

Example 5 suggests that we need to fix one of the two optimization variables
and only optimize the other one. Our algorithm is based on a dynamic program [3].
For each prefix of variables [x0, x1, . . . , xj ] and given a cost value c, it computes
a cover of focus cardinality, denoted Sc,j , which covers all penalized variables in
[x0, x1, . . . , xj ] and has cost exactly c. If Sc,j does not exist we assume that Sc,j =
∞. Sc,j is not unique as Example 6 demonstrates.

Example 6 Consider X = [x0, x1, . . . , x7] and
WEIGHTEDFOCUS(X, [2, 2], 5, 0, [7, 7]), with D(xi) = {1}, i ∈ I, I =
{0, 2, 3, 5, 7} and D(xi) = {0, 1}, i ∈ {0, 1, . . . 7} \ I . Consider the subse-
quence of variables [x0, . . . , x5] and S1,5. There are several sets of minimum
cardinality that cover all penalized variables in the prefix [x0, . . . , x5] and has cost
2, e.g. S1

1,5 = {s0,2, s3,5} or S2
1,5 = {s0,4, s5,5}. Assume we sort sequences by

their starting points in each set. We note that the second set is better if we want to
extend the last sequence in this set as the length of the last sequence s5,5 is shorter
compared to the length of the last sequence in S1

1,5, which is s3,5.
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Example 6 suggests that we need to put additional conditions on Sc,j to take into
account that some sets are better than others. We can safely assume that none of the
sequences in Sc,j starts at undetermined variables as we can always set it to zero.
Hence, we introduce a notion of an ordering between sets Sc,j and define conditions
that this set has to satisfy.

Ordering of sequences in Sc,j . We introduce an order over sequences in Sc,j .
Given a set of sequences in Sc,j , we sort them by their starting points. We denote
last(Sc,j) the last sequence in Sc,j in this order. If xj ∈ last(Sc,j) then |last(Sc,j)|
is, naturally, the length of last(Sc,j), otherwise |last(Sc,j)| =∞.

Ordering of sets Sc,j , c ∈ [0,max(zc)], j ∈ {0, 1, . . . , n − 1}. We define a
comparison operation between two sets Sc,j and Sc′,j′ :

– Sc,j < Sc′,j′ iff |Sc,j | < |Sc′,j′ | or |Sc,j | = |Sc′,j′ | and |last(Sc,j)| <
|last(Sc′,j′)|.

– Sc,j = Sc′,j′ iff |Sc,j | = |Sc′,j′ | and |last(Sc,j)| = |last(Sc′,j′)|.

Note that we do not take account of cost in the comparison as the current defini-
tion is sufficient for us. Using this operation, we can compare all sets Sc,j and S′c,j
of the same cost for a prefix [x0, . . . , xj ]. We say that Sc,j is optimal iff satisfies the
following 4 conditions.

Proposition 3 (Conditions on Sc,j)

1. Sc,j covers all Pk variables in [x0, x1, . . . , xj ],
2. cst(Sc,j) = c,
3. ∀sh,g ∈ Sc,j , xh /∈ Uk,
4. Sc,j is the first set in the order among all sets that satisfy conditions 1–3.

As can be seen from definitions above, given a subsequence of variables
x0, . . . , xj , Sc,j is not unique and might not exist. However, if |Sc,j | = |Sc′,j′ |,
c = c′ and j = j′, then last(Sc,j) = last(Sc′,j′).

Example 7 Consider WEIGHTEDFOCUS from Example 6. Consider the subsequence
[x0, x1]. S0,1 = {s0,0}, S1,1 = {s0,1}. Note that S2,1 does not exist. Consider the
subsequence [x0, . . . , x5]. We have S0,5 = {s0,0, s2,3, s5,5}, S1,5 = {s0,4, s5,5}
and S2,5 = {s0,3, s5,5}. By definition, last(S0,5) = s5,5, last(S1,5) = s5,5 and
last(S2,5) = s5,5. Consider the set S1,5. Note that there exists another set S′1,5 =
{s0,0, s2,5} that satisfies conditions 1–3. Hence, it has the same cardinality as S1,5

and the same cost. However, S1,5 < S′1,5 as |last(S1,5)| = 1 < |last(S′1,5)| = 3.

Bounds disentailment Each cell in the dynamic programming table fc,j , c ∈ [0, zUc ],
j ∈ {0, 1, . . . , n − 1}, where zUc = max(zc) − |Pk|, is a pair of values qc,j
and lc,j , fc,j = {qc,j , lc,j}, stores information about Sc,j . Namely, qc,j = |Sc,j |,
lc,j = |last(Sc,j)| if last(Sc,j) 6= ∞ and∞ otherwise. We say that fc,j/qc,j/lc,j is
a dummy (takes a dummy value) iff fc,j = {∞,∞}/qc,j =∞/lc,j =∞. If y1 =∞
and y2 = ∞ then we assume that they are equal. We introduce a dummy variable
x−1, D(x−1) = {0} and a row f−1,j , j = −1, . . . , n− 1 to keep uniform notations.
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Algorithm 3: Weighted FOCUS(x0, . . . , xn−1)
1 for c ∈ −1..zUc do
2 for j ∈ −1..n− 1 do
3 fc,j ← {∞,∞};
4 f0,−1 ← {0, 0} ;
5 for j ∈ 0..n− 1 do
6 for c ∈ 0..j do
7 if xj ∈ Pk then /* penalizing */
8 if (lc,j−1 ∈ [1, len)) ∨ (qc,j−1 =∞) then
9 fc,j ← {qc,j−1, lc,j−1 + 1};

10 else fc,j ← {qc,j−1 + 1, 1} ;
11 if xj ∈ Uk then /* undetermined */
12 if (lc−1,j−1 ∈ [1, len) ∧ qc−1,j−1 = qc,j−1) ∨ (qc,j−1 =∞) then

fc,j ← {qc−1,j−1, lc−1,j−1 + 1} ;
13 else fc,j ← {qc,j−1,∞} ;
14 if xj ∈ Nk then /* neutral */
15 fc,j ← {qc,j−1,∞}
16 return f ;

Fig. 4 Representation of one step of Algorithm 3.

Algorithm 3 gives pseudocode for the propagator. The intuition behind the algo-
rithm is as follows. We emphasize again that by cost we mean the number of covered
variables in Uk.

If xj ∈ Pk then we do not increase the cost of Sc,j compared to Sc,j−1 as the
cost only depends on undetermined variables. Hence, the best move for us is to extend
last(Sc,j−1) or start a new sequence if it is possible. This is encoded in lines 9 and 10
of the algorithm. Figure 4(a) gives a schematic representation of these arguments.

If xj ∈ Uk then we have two options. We can obtain Sc,j from Sc−1,j−1 by
increasing cst(Sc−1,j−1) by one. This means that xi will be covered by last(Sc,j).
Alternatively, from Sc,j−1 by interrupting last(Sc,j−1). This is encoded in line 12 of
the algorithm (Figure 4(b)).

If xj ∈ Nk then we do not increase the cost of Sc,j compared to Sc,j−1. More-
over, we must interrupt last(Sc,j−1), line 15 (Figure 4(c), ignore the gray arc).

First we prove a property of the dynamic programming table. We define a com-
parison operation between fc,j and fc′,j′ induced by a comparison operation between
Sc,j and Sc′,j′ :

– fc,j < fc′,j′ if (qc,j < qc′,j′) or (qc,j = qc′,j′ and lc,j < lc′,j′ ).
– fc,j = fc′,j′ if (qc,j = qc′,j′ and lc,j = lc′,j′ ).

In other words, as in a comparison operation between sets, we compare by the cardi-
nality of sequences, |Sc,j | and |Sc′,j′ |, and, then by the length of the last sequence in
each set, last(Sc,j) and last(Sc′,j′).
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First, we prove two technical results.

Lemma 8 Consider WEIGHTEDFOCUS([x0, . . . , xn−1], yc, len, k, zc). Let f be dy-
namic programming table returned by Algorithm 3. Then the non-dummy values of
fc,j are consecutive in each column, so that there do not exist c, c′, c′′, 0 ≤ c < c′ <
c′′ ≤ zUc , such that fc′,j is dummy and fc,j , fc′′,j are non-dummy.

Proof We prove by induction on the length of the sequence. The base case is trivial
as f0,−1 = {0, 0} and fc,−1 = {∞,∞}, c ∈ [−1] ∪ [1, zUc ]. Suppose the statement
holds for j − 1 variables.

Suppose there exist c, c′, c′′, 0 ≤ c < c′ < c′′ ≤ zUc , such that fc′,j is dummy
and fc,j , fc′′,j are non-dummy.

Case 1. Consider the case xj ∈ Pk. By Algorithm 3, lines 9 and 10, qc,j ∈
[qc,j−1, qc,j−1 + 1], qc′,j ∈ [qc′,j−1, qc′,j−1 + 1] and qc′′,j ∈ [qc′′,j−1, qc′′,j−1 +
1]. As fc′,j is dummy and fc,j , fc′′,j are non-dummy, fc′,j−1 must be dummy and
fc,j−1, fc′′,j−1 must be non-dummy. This violates induction hypothesis.

Case 2. Consider the case xj ∈ Uk. By Algorithm 3, line 12,
qc,j = min(qc−1,j−1, qc,j−1), qc′,j = min(qc′−1,j−1, qc′,j−1) and qc′′,j =
min(qc′′−1,j−1, qc′′,j−1). As fc′,j is dummy, then both fc′−1,j−1 and fc′,j−1 must
be dummy. As fc,j is non-dummy, then one of fc−1,j−1 and fc,j−1 is non-dummy.
As fc′′,j is non-dummy, then one of fc′′−1,j−1 and fc′′,j−1 is non-dummy. We know
that c− 1 < c ≤ c′ − 1 < c′ ≤ c′′ − 1 < c′′ or c < c′ < c′′. This leads to violation
of induction hypothesis.

Case 3. Consider the case xj ∈ Nk. By Algorithm 3, line 15, qc,j = qc,j−1,
qc′,j = qc′,j−1 and qc′′,j = qc′′,j−1. Hence, fc′,j−1 is dummy and fc,j−1, fc′′,j−1 are
non-dummy. This leads to violation of induction hypothesis. ut

Proposition 4 Consider WEIGHTEDFOCUS([x0, . . . , xn−1], yc, len, k, zc). Let f be
dynamic programming table returned by Algorithm 3. The elements of the first row
are non-dummy: f0,j , j = −1, . . . , n are non-dummy.

Proof We prove by induction on the length of the sequence. The base case is trivial
as f0,−1 = {0, 0}. Suppose the statement holds for j − 1 variables.

Case 1. Consider the case xj ∈ Pk. As f0,j−1 is non-dummy then by Algo-
rithm 3, lines 9– 10, f0,j is non-dummy.

Case 2. Consider the case xj ∈ Uk. Consider the condition (l−1,j−1 ∈ [1, len) ∧
q−1,j−1 = q0,j−1)∨ (q0,j−1 =∞) at line 12. By the induction hypothesis, q0,j−1 6=
∞. By the initialization procedure of the dummy row, q−1,j−1 = ∞. Hence, this
condition does not hold and, by line 13, f0,j is non-dummy.

Case 3. Consider the case xj ∈ Nk. As f0,j−1 is non-dummy then by Algo-
rithm 3, line 15, f0,j is non-dummy. ut

We can now prove an interesting monotonicity property of Algorithm 3.

Lemma 9 Consider WEIGHTEDFOCUS(X, yc , len, k , zc). Let f be dynamic pro-
gramming table returned by Algorithm 3. Non-dummy elements fc,j are monoton-
ically non increasing in each column, so that fc′,j ≤ fc,j , 0 ≤ c < c′ ≤ zUc ,
j = [0, . . . , n− 1].
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Proof By transitivity and consecutivity of non-dummy values (Lemma 8) and the
result that all elements in the 0th row are non-dummy (Proposition 4), it is sufficient
to consider the case c′ = c+ 1.

We prove by induction on the length of the sequence. The base case is trivial as
f0,−1 = {0, 0} and fc,0 are dummy, c ∈ [0, zUc ]. Suppose the statement holds for
j − 1 variables.

Consider the variable xj . Suppose, by contradiction, that fc,j < fc+1,j . Then
either qc,j < qc+1,j or qc,j = qc+1,j , lc,j < lc+1,j . By induction hypothesis,
we know that fc,j−1 ≥ fc+1,j−1, hence, either qc,j−1 > qc+1,j−1 or qc,j−1 =
qc+1,j−1, lc,j−1 ≥ lc+1,j−1.

We consider three cases depending on whether xj is a penalizing variable, an
undetermined variable or a neutral variable.

Case 1. Consider the case xj ∈ Pk. If qc,j−1 = ∞ then qc+1,j−1 = ∞ by the
induction hypothesis. Hence, by Algorithm 3, line 9, fc,j and fc+1,j are dummy and
equal. Suppose qc,j−1 6=∞. Then we consider four cases based on relative values of
qc,j′ , qc+1,j′ , lc,j′ , lc+1,j′ , j′ ∈ {j − 1, j}.

– Case 1a. Suppose qc,j < qc+1,j and qc,j−1 > qc+1,j−1. By Algorithm 3, lines 9
and 10, qc,j ≥ qc,j−1 and qc+1,j ≤ qc+1,j−1 + 1. Hence, qc,j < qc+1,j implies
qc+1,j−1 < qc,j < qc+1,j−1 + 1. We derive a contradiction.

– Case 1b. Suppose qc,j < qc+1,j and qc,j−1 = qc+1,j−1, lc,j−1 ≥ lc+1,j−1. By
Algorithm 3, lines 9 and 10, qc,j ≥ qc,j−1 and qc+1,j ≤ qc+1,j−1 + 1. Hence,
qc,j < qc+1,j implies qc+1,j−1 = qc,j−1 ≤ qc,j < qc+1,j ≤ qc+1,j−1 + 1.
Hence, qc+1,j−1 = qc,j−1 = qc,j and qc+1,j = qc+1,j−1 + 1. As qc,j−1 = qc,j
then lc,j−1 ∈ [1, len) by Algorithm 3 line 9. As qc+1,j = qc+1,j−1 + 1 then
lc+1,j−1 ∈ {len,∞} by Algorithm 3 line 10. This leads to a contradiction as
lc,j−1 ≥ lc+1,j−1.

– Case 1c. Suppose qc,j = qc+1,j , lc,j < lc+1,j and qc,j−1 > qc+1,j−1. Symmetric
to Case 1b.

– Case 1d. Suppose qc,j = qc+1,j , lc,j < lc+1,j and qc,j−1 = qc+1,j−1, lc,j−1 ≥
lc+1,j−1. By Algorithm 3, lines 9 and 10, qc,j ≥ qc,j−1 and qc+1,j ≤ qc+1,j−1+1.
Hence, qc,j = qc+1,j implies qc+1,j−1 = qc,j−1 ≤ qc,j = qc+1,j ≤
qc+1,j−1 + 1. Therefore, either qc,j = qc,j−1 ∧ qc+1,j = qc+1,j−1 or qc,j =
qc,j−1 + 1 ∧ qc+1,j = qc+1,j−1 + 1.
If qc,j = qc,j−1 and qc+1,j = qc+1,j−1 then lc,j−1 ∈ [1, len) and lc+1,j−1 ∈
[1, len) by Algorithm 3 line 9. Hence, lc,j = lc,j−1+1 and lc+1,j = lc+1,j−1+1.
As lc,j−1 ≥ lc+1,j−1, then lc,j ≥ lc+1,j . This leads to a contradiction with the
assumption lc,j < lc+1,j .
If qc,j = qc,j−1 + 1 ∧ qc+1,j = qc+1,j−1 + 1 then lc,j−1 ∈ {len,∞} and
lc+1,j−1 ∈ {len,∞} by Algorithm 3 line 10. Hence, lc,j = 1 and lc+1,j = 1.
This leads to a contradiction with the assumption lc,j < lc+1,j .

Case 2. Consider the case xj ∈ Uk. If qc,j−1 = ∞ then qc+1,j−1 = ∞ by the
induction hypothesis. Hence, by Algorithm 3, line 12, fc,j and fc+1,j are dummy and
equal.

Suppose qc,j−1 6= ∞. Then we consider four cases based on relative values of
qc,j′ , qc+1,j′ , lc,j′ , lc+1,j′ , j′ ∈ {j − 1, j}.
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– Case 2a Suppose qc,j < qc+1,j and qc,j−1 > qc+1,j−1. By Algorithm 3, line 12,
we know that qc+1,j−1 ≤ qc+1,j ≤ qc,j−1 and qc,j−1 ≤ qc,j ≤ qc−1,j−1. By
induction hypothesis, qc+1,j−1 ≤ qc,j−1 ≤ qc−1,j−1. Hence, if qc,j ≤ qc+1,j

then qc,j−1 ≤ qc,j ≤ qc+1,j ≤ qc,j−1. Therefore, if qc,j < qc+1,j then we derive
a contradiction.

– Case 2b. Identical to Case 2b.
– Case 2c. Suppose qc,j = qc+1,j , lc,j > lc+1,j and qc,j−1 > qc+1,j−1. As
qc,j−1 6= qc+1,j−1 then qc+1,j−1 = qc+1,j (line 12). We also know qc,j−1 ≤
qc,j ≤ qc+1,j ≤ qc,j−1 from Case 1a. Putting everything together, we get
qc,j−1 ≤ qc,j ≤ qc+1,j−1 < qc,j−1. This leads to a contradiction.

– Case 2d. Suppose qc,j = qc+1,j , lc,j < lc+1,j and qc,j−1 = qc+1,j−1, lc,j−1 ≥
lc+1,j−1. As we know from Case 1a qc+1,j−1 ≤ qc+1,j ≤ qc,j−1, qc,j−1 ≤ qc,j ≤
qc−1,j−1 and qc,j−1 ≤ qc,j ≤ qc+1,j ≤ qc,j−1. Hence, qc+1,j−1 = qc+1,j =
qc,j−1 = qc,j .
Consider two subcases. Suppose qc,j−1 < qc−1,j−1. Then lc,j = ∞ (line 13).
Hence, our assumption lc,j < lc+1,j is false.
Suppose qc,j−1 = qc−1,j−1. If lc−1,j−1 = len then lc,j = ∞ (line 13).
Hence, our assumption lc,j < lc+1,j is false. Therefore, lc−1,j−1 ∈ [1, len) and
lc,j−1 = lc−1,j−1 + 1. By induction hypothesis as qc+1,j−1 = qc,j−1 = qc−1,j−1
then lc+1,j−1 ≤ lc,j−1 ≤ lc−1,j−1. Hence, lc,j−1 ∈ [1, lc−1,j−1] ⊆ [1, len).
Therefore, lc+1,j = lc,j−1 + 1 ≤ lc−1,j−1 + 1 = lc,j−1. This contradicts our
assumption lc,j < lc+1,j .
Case 3. Consider the case xj ∈ Nk. This case follows immediately from Algo-
rithm 3, line 15, and the induction hypothesis.
ut

Lemma 10 Consider WEIGHTEDFOCUS(X, yc , len, k , zc). The dynamic program-
ming table fc,j = {qc,j , lc,j} c ∈ [0, zUc ], j = 0, . . . , n−1, is correct in the sense that
if fc,j exists and it is non-dummy then a corresponding set of sequences Sc,j exists
and satisfies conditions 1–4. The time complexity of Algorithm 3 is O(nmax(zc)).

Proof We start by proving correctness of the algorithm. We use induction on the
length of the sequence. Given fc,j we can reconstruct a corresponding set of se-
quences Sc,j by traversing the table backward.

The base case is trivial as x1 ∈ Pk, f0,0 = {1, 1} and fc,0 = {∞,∞}. Suppose
the statement holds for j − 1 variables.

Case 1. Consider the case xj ∈ Pk. Note, that the cost can not be increased on
seeing xj ∈ Pk as cost only depends on covered undetermined variables. By the in-
duction hypothesis, Sc,j−1 satisfies conditions 1–4. The only way to obtain Sc,j from
Sc′,j−1, c′ ∈ [0, zUc ], is to extend last(Sc,j−1) to cover xj or start a new sequence if
|last(Sc,j−1)| = len. If Sc,j−1 does not exist then Sc,j does not exist. The algorithm
performs this extension (lines 9 and 10). Hence, Sc,j satisfies conditions 1–4.

Case 2. Consider the case xj ∈ Uk. In this case, there exist two options to obtain
Sc,j from from Sc′,j−1, c′ ∈ [0, zUc ].

The first option is to cover xj . Hence, we need to extend last(Sc−1,j−1). Note
that we should not start a new sequence if last(Sc−1,j−1) = len as it is never optimal
to start a sequence on seeing a neutral variable.
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The second option is not to cover xj . Hence, we need to interrupt last(Sc,j−1).
By Lemma 9 we know that fc,j−1 ≤ fc−1,j−1, 0 < c ≤ C. By the induction

hypothesis, Sc,j−1 and Sc−1,j−1 satisfy conditions 1–4. Hence, Sc,j−1 ≤ Sc−1,j−1.
Consider two cases. Suppose |Sc,j−1| < |Sc−1,j−1|. In this case, it is optimal to

interrupt last(Sc,j−1).
Suppose |Sc,j−1| = |Sc−1,j−1| and |last(Sc,j−1)| ≤ |last(Sc−1,j−1)|.

If |last(Sc−1,j−1)| < len then it is optimal to extend last(Sc−1,j−1). If
|last(Sc−1,j−1)| = len then it is optimal to interrupt last(Sc,j−1), otherwise we
would have to start a new sequence to cover an undetermined variable xj , which is
never optimal. If Sc,j−1 and Sc−1,j−1 do not exist then Sc,j does not exist. If Sc,j−1
does not exist then case analysis is similar to the analysis above.

This case-based analysis is exactly what Algorithm 3 does in line 12. Hence, Sc,j

satisfies conditions 1–4.
Case 3. Consider the case xj ∈ Nk. Note that the cost can not be increased on

seeing xj ∈ Nk as cost only depends on covered undetermined variables. By the
induction hypothesis, Sc,j−1 satisfies conditions 1–4. The only way to obtain Sc,j

from Sc′,j−1, c′ ∈ [0, zUc ], is to interrupt last(Sc,j−1). If Sc,j−1 does not exist then
Sc,j does not exist. The algorithm performs this extension in line 15. Hence, Sc,j

satisfies conditions 1–4.
Regarding the worst case time complexity, it is clear that this algorithm requires

O(nmax(zc)) = O(n2) as we haveO(nmax(zc)) elements in the table and we only
need to inspect a constant number of elements to compute f(c, j). ut

Example 8 Table 1 shows an execution of Algorithm 3 on WEIGHTEDFOCUS from
Example 6. Note that |P0| = 5. Hence, zUc = max(zc) − |P0| = 2. As can be seen
from the table, the constraint has a solution as there exists a set S2,7 = {s0,3, s5,7}
such that |S2,7| = 2.

D(x0)D(x1)D(x2) D(x3) D(x4) D(x5) D(x6) D(x7)
c [1, 1] [0, 1] [1, 1] [1, 1] [0, 1] [1, 1] [0, 1] [1, 1]

0 {1, 1}{1,∞}{2, 1} {2, 2} {2,∞} {3, 1} {3,∞} {4, 1}
1 {1, 2} {1, 3} {1, 4} {1,∞} {2, 1} {2,∞} {3, 1}

zUc = 2 {1, 5} {2, 1} {2, 2} {2, 3}

Table 1 An execution of Algorithm 3 on WEIGHTEDFOCUS from Example 6. Dummy values fc,j are
removed.

Bounds consistency To enforce BC on the sequence [x0, x1, . . . , xn−1], we compute
an additional DP table b, bc,j , c ∈ [0, zUc ], j ∈ [−1, n− 1] on the reverse sequence of
variables (i.e. [xn−1, . . . , x1, x0]).

Lemma 11 Consider WEIGHTEDFOCUS(X, yc , len, k , zc). Bounds consistency can
be enforced in O(nmax(zc)) time.
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Proof We build dynamic programming tables f and b. We will show that to check if
xi = v has a support it is sufficient to examine O(zUc ) pairs of values fc1,i−1 and
bc2,n−i−2, c1, c2 ∈ [0, zUc ] which are neighbour columns to the ith column. It is easy
to show that if we consider all possible pairs of elements in fc1,i−1 and bc2,n−i−2
then we determine if there exists a support for xi = v. There are O(zUc × zUc ) such
pairs. The main part of the proof shows that it sufficient to consider O(zUc ) such
pairs. Next, we provide a formal proof.

Consider dynamic programming tables f and b and a variable-value pair xi = v.
We will show that to check if xi = v has a support it is sufficient to examine O(zUc )
pairs of values fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zUc ]. We introduce two dummy
variables x−1 and xn, D(x−1) = D(xn) = 0 to keep uniform notations.

Consider a variable-value pair xi = v, v > k. Note that it is sufficient to find a
support one value v, v > k as all values greater than k are indistinguishable. Due
to Lemma 10 it is sufficient to consider only elements in the neighbouring columns
to the ith column in f and b. Namely, the (i − 1)th column in f and (n − i − 2)
in b. The reason for that is that elements in these columns fc1,i−1 and bc2,n−i−2,
c1, c2 ∈ [0, zUc ] correspond to sets of sequences, Sc1,i−1 and Sc2,n−i−2, that are
optimal with respect to conditions 1–4 for the prefix [x0, . . . , xj−1] and the suffix
[xj+1, . . . , xn−1], respectively. The main goal is to check whether we can ‘glue’ the
corresponding partial covers Sc1,i−1, Sc2,n−i−2 with xi = v into a single cover S
over all variables that satisfies the constraint. To glue Sc1,i−1, Sc2,n−i−2 and xi = v
into a single cover we have few options:

– The first and the most expensive option is to create a new sequence s′ of length
1 to cover xi. Then the union S = Sc1,i−1 ∪ Sc2,n−i−2 ∪ {s′} forms a cover s.t.
cst(S) = c1 + c2 + 1 and |S| = |Sc1,i−1|+ |Sc2,n−i−2|+ 1.

– The second option is to extend last(Sc1,i−1) to the right by one if
|last(Sc1,i−1)| < len. Hence, the updated set S′c1,i−1 is identical to Sc1,i−1
except the last sequence is increased by one element on the right. Then the
union S = S′c1,i−1 ∪ Sc2,n−i−2 forms a cover: cst(S) = c1 + c2 + 1 and
|S| = |Sc1,i−1|+ |Sc2,n−i−2|.

– The third option is to extend last(Sc2,n−i−2) to the left by one if
|last(Sc2,n−i−2)| < len. This case is symmetric to the previous case.

– The fourth and the cheapest option is to glue last(Sc1,i−1), xv and
last(Sc2,n−i−2) to a single sequence if |last(Sc1,i−1)| + |last(Sc2,n−i−2)| <
len. Hence, S′c1,i−1 = Sc1,i−1 \ last(Sc1,i−1), S′c2,n−i−2 = Sc2,n−i−2 \
last(Sc2,n−i−2) and s′ is a concatenation of last(Sc1,i−1), x = v and
last(Sc2,n−i−2)]. Then the union S = S′c1,i−1 ∪S

′
c2,n−i−2 ∪{s

′} forms a cover:
cst(S) = c1 + c2 + 1 and |S| = |Sc1,i−1|+ |Sc2,n−i−2| − 1.

We can go over all pairs fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zUc ] and check the
four cases above. If obtained cover S is such that cst(S) ≤ zUc and |S| ≤ max(yc)
then we have found a support for xi = v. Otherwise, xi = v does not have a support
due to Lemma 10. However, if we need to consider all pairs fc1,i−1 and bc2,n−i−2,
c1, c2 ∈ [0, zUc ] then finding a support takes O((zUc )2) time. We show next that it
is sufficient to consider a linear number of pairs. We observe that in all four options
above the cost of resulting cover S is c1+c2+1. Therefore, we only need to consider
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pairs fc1,i−1 and bc2,n−i−2 such that c1+c2+1 ≤ zUc . Therefore, for each fc1,i−1 it is
sufficient to consider only one element bc2,n−i−2 such that bc2,n−i−2 is non-dummy
and c2 is the maximum value that satisfies inequality c1 + c2 + 1 ≤ zUc .

We prove by contradiction. Suppose, there exists a pair fc1,i−1 and bc′2,n−i−2
such that c1 + c′2 + 1 ≤ zUc and Sc1,i−1 and Sc′2,n−i−2 can be extended to a support.
However, Sc1,i−1 and Sc2,n−i−2 can not be extended to a support for xi = v, c1 +
c2 + 1 ≤ zUc and c′2 < c2. By Lemma 9, we know bc′2,n−i−2 ≤ bc2,n−i−2. However,
in this case, |Sc1,i−1| + |Sc2,n−i−2| ≤ |Sc1,i−1| + |Sc′2,n−i−2| ≤ max(yc) + 1. In
the case of equality, we know that last(Sc2,n−i−2) < last(Sc′2,n−i−2). Hence, if
Sc1,i−1 and Sc′2,n−i−2 can be extended to a support then Sc1,i−1 and Sc2,n−i−2 can
be extended to a support. This leads to a contradiction.

Note that we do not need to search for each fc1,i−1 as we can find its pair
bc2,n−i−2 in O(1) due to consecutivity property of non-dummy values in each col-
umn (Lemma 8). Hence, we need O(zUc ) = O(max(zc)) time to check for support
for xi = v.

Consider a variable-value pair xi = v, v ≤ k. Note that it is sufficient to find
a support for one value v, v ≤ k as all values less than or equal to k are in-
distinguishable. We again consider all pairs in the neighbouring columns, fc1,i−1
and bc2,n−i−2 and consider how to ‘glue’ the corresponding partial covers Sc1,i−1,
Sc2,n−i−2 with xi = v into a single cover S over all variables to satisfy the
constraint. In this case, there is only one option to join Sc1,i−1 and Sc2,n−i−2.
Then union S = Sc1,i−1 ∪ Sc2,n−i−2 forms a cover: cst(S) = c1 + c2 and
|S| = |Sc1,i−1| + |Sc2,n−i−2|. We can go over all pairs fc1,i−1 and bc2,n−i−2,
c1, c2 ∈ [0, zUc ] to check if such a pair exists. We again show that it is sufficient
to consider a linear number of pairs. We observe that in all four options above the
cost of resulting cover S is c1 + c2. Therefore, we only need to consider pairs fc1,i−1
and bc2,n−i−2 such that c1 + c2 ≤ zUc . Therefore, for each fc1,i−1 it is sufficient to
consider only one element bc2,n−i−2 such that bc2,n−i−2 is non-dummy and c2 is the
maximum value that satisfies inequality c1 + c2 ≤ zUc .

We prove by contradiction. Suppose, there exists a pair fc1,i−1 and bc′2,n−i−2 such
that c1 + c′2 ≤ zUc and Sc1,i−1 and Sc′2,n−i−2 can be extended to a support. However,
Sc1,i−1 and Sc2,n−i−2 can not be extended to a support for xi = v, c1 + c2 ≤ zUc
and c′2 < c2. By Lemma 9, we know bc′2,n−i−2 ≤ bc2,n−i−2. However, in this case,
|Sc1,i−1|+ |Sc2,n−i−2| ≤ |Sc1,i−1|+ |Sc′2,n−i−2| ≤ max(yc). In the case of equality,
we know that last(Sc2,n−i−2) < last(Sc′2,n−i−2). Hence, if Sc1,i−1 and Sc′2,n−i−2
can be extended to a support then Sc1,i−1 and Sc2,n−i−2 can be extended to a support.
This leads to a contradiction.

Complexity. We compute the tables f and b. Then we check for a support for two
values v1 and v2, v1 ≤ k and v2 > k, in D(xi) in O(max(zc)) time for each variable
xi, i = 0, . . . , n − 1. Hence, the time complexity to enforce domain consistency is
O(nmax(zc)).

In particular, to check a support for a variable-value pair xi = v, v > k, for each
fc1,i−1 it is sufficient to consider only one element bc2,n−i−2 such that bc2,n−i−2 is
non-dummy and c2 is the maximum value that satisfies inequality c1 + c2 + 1 ≤ zUc .
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D(x0)D(x1)D(x2) D(x3) D(x4) D(x5) D(x6) D(x7)
c [1, 1] [0, 1] [1, 1] [1, 1] [0, 1] [1, 1] [0, 1] [1, 1]

0 {4, 1}{3,∞}{3, 2} {3, 1} {2,∞} {2, 1} {1,∞} {1, 1}
1 {3, 1}{2,∞}{2, 2} {2, 1} {1,∞} {1, 3} {1, 2}

zUc = 2{2, 4} {2, 3} {2, 1} {1, 5} {1, 4}

Table 2 An execution of Algorithm 3 on the reverse sequence of variables in WEIGHTEDFOCUS from
Example 6. Dummy values bc,j are removed.

To check a support for a variable-value pair xi = v, v ≤ k, for each fc1,i−1 it is
sufficient to consider only one element bc2,n−i−2 such that bc2,n−i−2 is non-dummy
and c2 is the maximum value that satisfies inequality c1 + c2 ≤ zUc . ut

Example 9 Table 2 shows an execution of Algorithm 3 on the reversed sequence of
variables x of FOCUS from Example 6.

Consider, for example, the variable x4. To check if x4 = 1 has as a support we
need to consider two pairs: f0,3, b1,5 and f1,3, b0,5.

Consider the first pair: f0,3 = {2, 2} and b1,5 = {1, 3}. As |S0,3| + |S1,5| =
2 + 1 = max(yc) + 1 = 3, we check whether we can merge last(S0,3), x4 = 1, and
last(S1,5). Hence, |last(S0,3)| + |last(S1,5)| = 2 + 3 = len = 5. Therefore, we
cannot merge last(S0,3), xi = 1 and last(S1,5) into a single sequence s′ of length 5.

Consider the second pair: f1,3 = {1, 4} and b0,5 = {2, 1}. As |S1,3| + |S0,5| =
1 + 2 = max(yc) + 1 = 3, x4 = 1, we check whether we can merge last(S1,3) and
last(S0,5). As |last(S1,3)| + |last(S0,5)| = 4 + 1 is equal to len = 5, we cannot
merge last(S1,3), xi = 1 and last(S0,5) into a single sequence s′ of length at most
5. The second pair cannot be used to build a support for x4 = 1. Hence, x4 = 1 does
not have a support.

To check if x4 = 0 has as support we need to consider pairs: f0,3, b2,5 and f1,3,
b1,5. Consider the first pair: f0,3 = {2, 2} and b2,5 = {2, 1}. We have |S0,3|+|S2,5| =
2 + 2 = max(yc) = 4. Hence, x4 = 0 has a support. ut

We observe a useful property of the constraint. If there exists fc,n−1 such that
c < max(zc) and qc,n−1 < max(yc) then the constraint is BC. This follows from the
observation that given a solution of the constraint SX , changing a variable value can
increase cst(SX) and |SX | by at most one.

Decomposition with O(n) variables and constraints. Alternatively we can decom-
pose WEIGHTEDFOCUS using O(n) additional variables and constraints.

Given FOCUS(X, yc , len, k ), let zc be a variable and B=[b0, b1, . . . , bn−1]
be a set of variables such that ∀ bl ∈ B,D(bl) = {0, 1}. We can decompose
WEIGHTEDFOCUS as follows:

WEIGHTEDFOCUS(X, yc , len, k , zc)⇔ FOCUS(X, yc , len, k ) ∧ [∀l, 0 ≤ l < n,
[(xl ≤ k) ∧ (bl = 0)] ∨ [(xl > k) ∧ (bl = 1)]] ∧

∑
l∈{0,1,...,n−1} bl ≤ zc .

Enforcing BC on each constraint of the decomposition is weaker than BC
on WEIGHTEDFOCUS. Given xl ∈ X , a value may have a unique support for
FOCUS which violates

∑
l∈{0,1,...,n−1} bl ≤ zc , and conversely. Consider n=5,
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D(x0)=D(x2)={1}, D(x3)={0}, and D(x1)=D(x4)={0, 1}, D(yc) = {2},
D(zc) = {3}, k=0 and len=3. Value 1 for x4 corresponds to this case.

Another interesting approach for solving WEIGHTEDFOCUS is to reformulate
it as an integer linear program. If the constructed ILP is tractable as was the
case for SPRINGYFOCUS, then we can obtain an alternative filtering algorithm for
WEIGHTEDFOCUS. However, the approach that we used in Section 3.3 does not
work for WEIGHTEDFOCUS. Recall that in Section 3.3 it was sufficient to consider
O(n) possible sequences with distinct starting points. It is essential that sequences
have distinct starting points as this ensures that the resulting ILP has the consecutive
ones property. By relaxing the disjointness requirement, we used these sequences
to find a solution of SPRINGYFOCUSOVERLAP and transform it into a solution of
SPRINGYFOCUS. The following example shows that the same approach does not
work for WEIGHTEDFOCUS.

Example 10 Consider variables X = [x0, x1, . . . , x5] with domains
[1, {0, 1}, 1, 1, {0, 1}, 1] and WEIGHTEDFOCUS(X, [2, 3], 3, 0, [0, 4]). Fol-
lowing approach in Section 3.3, we consider six sequences So

X =
{s0,2, s1,3, s2,4, s3,5, s4,6, s5,6, s6,6}. The cost of any solution that uses sequences
from So

X is 6. However, there exists a solution of WEIGHTEDFOCUS with cost 4:
SX = {s0,1, s2,3, s5,5}, yc = 3 and zc = 4.

5 Weighted Springy FOCUS

We consider a further generalization of the FOCUS constraint that combines
SPRINGYFOCUS and WEIGHTEDFOCUS. We prove that we can propagate this con-
straint in O(nmax(zc)) time, which is same as enforcing BC on WEIGHTEDFOCUS.

5.1 Definition and Filtering Algorithm

Definition 10 Let yc and zc be two variables and k , len , h be three integers, such
that 1 ≤ len ≤ |X| and 0 < h < len − 1. An instantiation of X ∪ {yc} ∪ zc satisfies
WEIGHTEDSPRINGYFOCUS(X, yc , len, h, k , zc) iff there exists a set SX of disjoint
sequences of indices si,j such that five conditions are all satisfied:

1. |SX | ≤ yc
2. ∀xl ∈ X , xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX , |{l ∈ si,j , xl ≤ k}| ≤ h
4. ∀si,j ∈ SX , j − i+ 1 ≤ len , xi > k and xj > k.
5.

∑
si,j∈SX

|si,j | ≤ zc .

We can again partition cost of S into two terms.
∑

si,j∈S |si,j | =∑
si,j∈S cst(si,j)+ |Pk|. However, cst(si,j) is the number of undetermined and neu-

tral variables covered si,j , cst(si,j) = |{p|xp ∈ Uk ∪Nk, xp ∈ si,j}| as we allow to
cover up to h neutral variables.
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The propagator is again based on a dynamic program that for each prefix of vari-
ables [x0, x1, . . . , xj ] and given cost c computes a cover Sc,j of minimum cardinality
that covers all penalized variables in the prefix [x0, x1, . . . , xj ] and has cost exactly
c. We face the same problem of how to compare two sets S1

c,j and S2
c,j of minimum

cardinality. The issue here is how to compare last(S1
c,j) and last(S2

c,j) if they cover
a different number of neutral variables. Luckily, we can avoid this problem due to the
following monotonicity property. If last(S1

c,j) and last(S2
c,j) are not equal to infinity

then they both end at the same position j. Hence, if last(S1
c,j) ≤ last(S2

c,j) then the
number of neutral variables covered by last(S1

c,j) is no larger than the number of
neutral variables covered by last(S2

c,j). Therefore, we can define order on sets Sc,j

as we did in Section 4 for WEIGHTEDFOCUS.
Our bounds disentailment detection algorithm for WEIGHTEDSPRINGYFOCUS

mimics Algorithm 3. We show a pseudocode for it in Algorithm 4.

Algorithm 4: WEIGHTEDSPRINGYFOCUS(x0, . . . , xn−1)
1 for c ∈ −1..zUc do
2 for j ∈ −1..n− 1 do
3 fc,j ← {∞,∞,∞};
4 f0,−1 ← {0, 0, 0} ;
5 for j ∈ 0..n− 1 do
6 for c ∈ 0..j do
7 if xj ∈ Pk then /* penalizing */
8 if (lc,j−1 ∈ [1, len)) ∨ (qc,j−1 =∞);
9 then

10 fc,j ← {qc,j−1, lc,j−1 + 1, hc,j−1};
11 else
12 fc,j ← {qc,j−1 + 1, 1, 0};
13 if xj ∈ Uk then /* undetermined */
14 if (lc−1,j−1 ∈ [1, len) ∧ qc−1,j−1 = qc,j−1) ∨ (qc,j−1 =∞);
15 then
16 fc,j ← {qc−1,j−1, lc−1,j−1 + 1, hc−1,j−1};
17 else
18 fc,j ← {qc,j−1,∞,∞} ;
19 if xj ∈ Nk then /* neutral */
20 if (lc−1,j−1 ∈ [1, len) ∧ hc−1,j−1 ∈ [1, h) ∧ qc−1,j−1 =

qc,j−1) ∨ (qc,j−1 =∞);
21 then
22 fc,j ← {qc−1,j−1, lc−1,j−1 + 1, hc−1,j−1 + 1};
23 else
24 fc,j ← {qc,j−1,∞,∞} ;
25 return f ;

We highlight two non-trivial differences between Algorithm 4 and Algorithm 3.
The first difference is that each cell in the dynamic programming table fc,j , c ∈
[0, zUc ], j ∈ {0, 1, . . . , n − 1}, where zUc = max(zc) − |Pk|, is a triple of values
qc,j , lc,j and hc,j , fc,j = {qc,j , lc,j , hc,j}. The new parameter hc,j stores the number
of neutral variables covered by last(Sc,j). The second difference is in the way we
deal with neutral variables. If xj ∈ Nk then we have two options now. We can obtain
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Sc,j from Sc−1,j−1 by increasing cst(Sc−1,j−1) by one and increasing the number of
covered neutral variables by last(Sc,j−1) (Figure 4(c), the gray arc). Alternatively,
we can obtain Sc,j from Sc,j−1 by interrupting last(Sc,j−1) (Figure 4(c), the black
arc). BC can be enforced using two modifications of the corresponding algorithm for
WEIGHTEDFOCUS

Lemma 12 Consider WEIGHTEDSPRINGYFOCUS(X, yc , len, h, k , zc). BC can be
enforced in O(nmax(zc)) time.

Proof The main idea is identical to the proof of the WEIGHTEDFOCUS constraint.
We only highlight the differences between the WEIGHTEDFOCUS constraint and the
WEIGHTEDSPRINGYFOCUS constraint.

Consider a variable-value pair xi = v, v > k. The only difference is in the fourth
option. We denote h(si,j) the number of neutral variables covered by si,j . Similarly,
h(S) =

∑
si,j∈S

h(si,j).

– The fourth and the cheapest option is to glue last(Sc1,i−1), xv and
last(Sc2,n−i−2) to a single sequence if |last(Sc1,i−1)|+|last(Sc2,n−i−2)| < len
and h(last(Sc1,i−1)) + h(last(Sc2,n−i−2)) ≤ h. Hence, S′c1,i−1 = Sc1,i−1 \
last(Sc1,i−1), S′c2,n−i−2 = Sc2,n−i−2 \ last(Sc2,n−i−2) and s′ is a concate-
nation of last(Sc1,i−1), x = v and last(Sc2,n−i−2)]. Then the union S =
S′c1,i−1 ∪ S

′
c2,n−i−2 ∪ {s

′} forms a cover: cst(S) = c1 + c2 + 1, |S| =
|Sc1,i−1|+ |Sc2,n−i−2| − 1 and h(S) = h(last(Sc1,i−1)) + h(last(Sc2,n−i−2)).

The rest of the proof is analogous to WEIGHTEDFOCUS.
Consider a variable-value pair xi = v, v ≤ k. The main difference is that

we have the second option to build a support. Namely, we glue Sc1,i−1, xi and
Sc2,n−i−2. Hence, if c1+c2+1 ≤ zUc , |last(Sc1,i−1)|+|last(Sc2,n−i−2)| < len and
h(last(Sc1,i−1)) + h(last(Sc2,n−i−2)) < h then we can build a support for xi = v.
The rest of the proof is analogous to WEIGHTEDFOCUS. ut

5.2 Decomposition

WEIGHTEDSPRINGYFOCUS can be encoded using the cost-REGULAR constraint [5].
Indeed, one can use two states ᵀ0 and ᵀ1 (in addition to the initial state) as fol-
lows. The state ᵀ0 captures all values v ≤ k not included in any subsequence in
SX . The set of states ᵀ1 captures the values belonging to a subsequence in SX .
The transition between ᵀ0 and ᵀ1 is quite straightforward following the semantic
of WEIGHTEDSPRINGYFOCUS, however, the automaton is non-deterministic as on
seeing v ≤ k in ᵀ1, it either covers the variable or interrupts the last sequence. The
automaton needs 3 counters to compute len, yc and h . Hence, the time complexity
of this encoding is O(n4). Unfortunately the non-deterministic cost-REGULAR is not
implemented in any constraint solver to our knowledge. In fact REGULAR [7] and
cost-REGULAR [5] are defined only with deterministic automatons. A possible way
to deal with our non-deterministic situation is to transform it into a deterministic au-
tomaton. However this transformation is known to be exponential in the worst case.
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The worst case time complexity O(n4) is likely to get worse, however, domain con-
sistency is guaranteed. In contrast, our algorithm takes just O(n2) time.

WEIGHTEDSPRINGYFOCUS can also be decomposed using the GCC constraint
[14]. We define the following variables for all i ∈ [0,max(yc)−1] and j ∈ [0, n−1]:
Si the start of the ith sub-sequence. D(Si) = {0, .., n+ max(yc)}; Ei the end of the
ith sub-sequence. D(Ei) = {0, .., n+ max(yc)}; Tj the index of the subsequence in
SX containing xj .D(Tj) = {0, ..,max(yc)}; Zj the index of the subsequence in SX

containing xj s.t. the value of xj is less than or equal to k.D(Zj) = {0, ..,max(yc)};
lastc the cardinality of SX .D(lastc) = {0, ..,max(yc)}; Card, a vector of max(yc)
variables having {0, .., h} as domains.

WEIGHTEDSPRINGYFOCUS(X, yc , len, h, k , zc)⇔

(xj ≤ k) ∨ Zj = 0; (xj ≤ k) ∨ Tj > 0;

(xj > k) ∨ (Tj = Zj); (Tj ≤ lastc);

(Tj 6= i) ∨ (j ≥ Si−1); (Tj 6= i) ∨ (j ≤ Ei−1);

(i > lastc) ∨ (Tj = i)∨(j < Si−1) ∨ (j > Ei−1);

∀q ∈ [1,max(yc)− 1] : q ≥ lastc ∨ Sq > Eq−1;

∀q ∈ [0,max(yc)− 1] : q ≥ lastc ∨ Eq ≥ Sq;

∀q ∈ [0,max(yc)− 1] : q ≥ lastc ∨ len > (Eq − Sq);

lastc ≤ yc ; Gcc([T0, ..,Tn−1], {0}, [n− zc ]);

Gcc([Z0, ..,Zn−1], {1, ..,max(yc)}, Card);

The main advantage of this decomposition is that it uses constraints that
are available in most existing solvers. However, it hinders propagation, that is,
Bound Consistency is no longer guaranteed. Consider the same example showing
that WEIGHTEDFOCUS is stronger than the first decomposition using FOCUS.Let
n=5, h=0, k=0, len=3,D(x0)=D(x2)={1},D(x3)={0},D(x1)=D(x4)={0, 1},
D(yc) = {2}, and D(zc) = {3}. Enforcing Bound Consistency using the above de-
composition will keep the domain of x4 equal to {0, 1} whereas the value 1 has no
support.

6 Experiments

6.1 Protocol

We use the Choco-2.1.5 solver on Intel Xeon E5-2640 processors (2.50GHz) un-
der Linux. The source code as well as the reproduction steps are available at
http://siala.github.io/focus/focus-details.pdf. We compare
the propagators of our global constraints (denoted by F) of WEIGHTEDFOCUS and
WEIGHTEDSPRINGYFOCUS against two decompositions with generic constraints
(denoted by D1 and D2). For each benchmark, the comparison is performed using
the same search strategies for the different constraint models. The first decomposition
(D1) is restricted to WEIGHTEDFOCUS and uses FOCUS as we explained in section 4.

http://siala.github.io/focus/focus-details.pdf


Three Generalizations of the FOCUS Constraint 29

Te second decomposition (D2) is shown in Section 5.2 and uses constraints available
in most CP solvers (such as GCC ). We do not present experiments for the propagator
of SPRINGYFOCUS because this propagator is linear in the number of variables and
does not involve complex data structures, which leads to a behaviour similar to the
case of FOCUS (see [12]). Although it makes an interesting connection between ILP
and our framework, the ILP formulation of SPRINGYFOCUS cannot outperform this
propagator.

We use the following presentation protocol for all tables. First, we give the num-
ber of solved instances (#sol). Then, we report the CPU time (Time), the number of
nodes (Nodes), and the speed of exploration in terms of nodes explored per second
(Nodes/s). In particular, we report the average (avg.) and the standard deviation (dev.)
for these statistics across all successful runs. The best results are shown with bold
face fonts w.r.t. the number of solutions (#sol).

6.2 Sports league scheduling (SLS)

We extend a single round-robin problem with n = 2p teams. Each week each team
plays a game either at home or away. Each team plays exactly once all the other teams
during a half-season (in practice, the second half of the season is symmetric). We min-
imize the number of breaks (a break for one team is two consecutive home or two con-
secutive away games), while fixed weights in {0, 1} are assigned to all games: games
with weight 1 are important for TV channels. The goal is to group consecutive weeks
where at least one game is important (sum of weights > 0), to increase the price of
TV broadcast packages. Packages are limited to 5 weeks and should be as short as
possible. These requirements are expressed either using WEIGHTEDFOCUS or using
its decomposition. The concentration of important matches into packages is obtained
by minimizing yc , while for each such value of yc we obtain the global minimum
length for packages by minimizing the sum of lengths.

Model. In our model, inverse-channelling and ALLDIFFERENT constraints with the
strongest propagation level express that each team plays once against each other
team. With respect to the sport scheduling part (independently from the weights
and WEIGHTEDFOCUS constraint or its decomposition), our model is inspired from
Régin’s paper on sport league scheduling [15], although some differences exist, in
order to best fit with the available propagators of Choco-2.1.5. A pseudo-code of the
model of the whole problem is provided in Figure 5. We use the procedure getCol-
umn(Integer[][] m, k) for extracting the kth column of the matrix given as argument.

Search strategy. We use the following search strategy: assign first the sum of breaks
by team, then the breaks and then the places, using for each group the DomOverWDeg
variable selection strategy with the lowest values assigned first. We fix the matches
of the first team and then minimize zc while the number of breaks is at its theoretical
minimum (n− 2) and we arbitrary fix the maximum value of yc .

In our context, using DomOverWDeg does not affect the comparison between
the decomposition and the global constraint approach. Using a static search strategy
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INPUT:
Int n; // number of teams, indexed from 0 to n− 1
Int[][] wl; // size: n× n list of weights per possible couple of team
Int max(yc), max(zc) // WEIGHTEDFOCUS
MODEL:
IntVar[][] opponents; // size: n× (n− 1), domain for each team: all other team numbers
IntVar[][] place; // size: n× (n− 1), domain: {0,1} (away or home)
IntVar[][] breaks; // size: n× (n− 2), domain: {0, 1} (no break, or break)
IntVar[] sum breaks by team; // size: n
IntVar obj number of breaks;
IntVar [][] match weights; // size: n× (n− 1), domain: {0,1}
IntVar [] sum weights by day; // size: n-1
IntVar yc , zc ; // WEIGHTEDFOCUS
int len, k ; // WEIGHTEDFOCUS
∀i ∈ 0..n− 1, ALLDIFFERENT(opponents[i]);
∀k ∈ 0..n− 2, ALLDIFFERENT(getColumn(opponents, k));
∀i ∈ 0..n− 1, ∀k ∈ 0..n− 2, opponents[i][k] = j⇔ opponents[j][k] = i;
∀i ∈ 0..n− 1, ∀k ∈ 0..n− 2, places[i][k] = 0 ∧ opponents[i][k] = j⇔ place[j][k] = 1;
∀i ∈ 0..n− 1, ∀k ∈ 0..n− 2, places[i][k] = 1 ∧ opponents[i][k] = j⇔ place[j][k] = 0;
∀i ∈ 0..n− 1, ∀j ∈ 0..n− 3, breaks[i][j] = (place[i][j]=place[i][j + 1]); // reification
∀i ∈ 0..n− 1, sum breaks by team[i] = sum of breaks of each team;
obj number of breaks =

∑
i∈0..n−1 sum breaks by team[i];

∀i ∈ 0..n− 2 sum weights by day[i] = sum of weights of each day;
∀i ∈ 0..n− 1, ∀k ∈ 0..n− 2, opponents[i][k] = j⇔ match weights[i][k] = wl[i][j];
WEIGHTEDFOCUS(sum weights by day, yc , len , k , zc);

Fig. 5 Model of the SLS benchmark.

leads to poor results concerning the sport league scheduling part of the problem, but
this part is common to the decomposition and the global constraint models. Regard-
ing TV broadcast packages, the results with WEIGHTEDFOCUS are almost the same
with DomOverWDeg and if we use a static search strategy for the variables express-
ing weights and sum of weights. Using the decomposition approach, the results are
better with DomOverWDeg. We present the results obtained for each model using
DomOverWDeg in Table 3 and using a static branching (lexicographic exploration
with minimum value) in Table 4 .

We consider the results with 16, 18, and 20 teams, on sets of 50 instances with
10 random important games and a limit of 400K backtracks. max(yc) = 3 and we
search for one solution with h ≤ 7 (instances n-1), h ≤ 6 (n-2) and h ≤ 5 (n-3).
Note that the models with 18 and 20 teams are not shown in Table 4 because no
solution was found with the static branching.

Table 3 shows clearly that the model using the global propagator dominates the
decomposition on this problem. The difference of resolved instances between the two
models increases with the instance size. For example with instances 20 3 the filtering
algorithm solves 39 instances out of 50 whereas the decomposition solves only 29 of
the instances. The new filtering does not require additional amount of time, and in
fact it is faster than the average CPU time of the decomposition in general1.

1 Recall that the average CPU includes only the runtime of the successful runs.
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Table 3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg.

16 1 16 2 16 3
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
F 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 9679 21555 1270 124

D1 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 25728 1300 186

18 1 18 2 18 3
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
F 49 2 7 1876 6460 1050 157 49 7.8 16.3 8921 23642 1026 176 42 12 16 12062 17158 946 108

D1 49 3.6 9.5 6040 16230 1290 432 46 9.7 16.3 15063 31795 1207 412 37 11.5 14.7 12648 16097 1022 153

20 1 20 2 20 3
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
F 49 7.5 15.2 6265 12237 866 174 45 15.5 21.1 13576 20727 827 121 39 23.7 28.2 19274 22659 828 98

D1 43 14.1 35 19879 54977 1013 318 35 13.2 18393 17318 28917 1017 277 29 18.2 22.7 16373 20769 861 126

There are many cases where the shape of the search tree differs between the two
methods in terms of nodes. For instance, with 18 1, enforcing domain consistency
deplores 1876 nodes whereas the decomposition explores at least three times this
number (i.e. 6040). The extra filtering of the global constraint does help a lot by
pruning more unsatisfiable subtrees which guides the heuristic towards solutions. It
should be noted, however, that the decomposition explores faster the search tree. This
behaviour is expected as decomposition leads to simpler filtering that is likely to be
faster in general. It should be noted also that the standard deviation in almost all the
cases was smaller with the complete filtering.
Regarding the results with the static branching, one can confirm that the models be-
have poorly as expected (Table 4). However, the performances trend is the same.
More importantly, the results of the complete filtering are more robust than the de-
composition. Take for instance the results of 16 2. The standard deviation of the
nodes is 37 using the global constraint and 1749 using the decomposition.

Table 4 SLS with WEIGHTEDFOCUS and its decomposition using a static branching.

16 1 16 2 16 3
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
F 23 0 0 6553 39 7144 1353 15 0 0 3911 37 6346 750 7 0 0 1673 31 5741 983

D1 21 0 0 6505 51 7115 1885 13 0.3 1 10538 1749 6423 2191 7 0.5 1.1 7168 1917 5043 1660
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6.3 Cumulative Scheduling with Rentals.

Given a horizon of n days and a set of time intervals [si, ei], i ∈ {1, 2, . . . , p}, a
company needs to rent a machine between li and ui times within each time interval
[si, ei]. We assume that the cost of the rental period is proportional to its length. On
top of this, each time the machine is rented we pay a fixed cost.

Model. The problem is stated in a very simple way by bucketing time with {0,1} vari-
ables indicating whether a machine is rented or not for covering this time point. We
define a conjunction of one WEIGHTEDSPRINGYFOCUS(X, yc , len, h, 0, zc) with a
set of AMONG constraints. The decision version of the problem is presented in Fig-
ure 6. The goal is to build a schedule for rentals that satisfies all demand constraints
and minimizes simultaneously the number of rental periods and their total length.
Therefore, we build a Pareto frontier over two cost variables, as Figure 7 shows for
one of the instances of this problem. More specifically, we start by minimizing yc ,
then immediately try to minimize zc while fixing yc to its minimum. Afterwards,
we repeatedly increment yc by 1 then try to find the correspondent minimal value of
zc . The process stops when either a maximum number of iterations is reached or no
improvement on zc is obtained.

INPUT:
Int n; // size of the sequence
Int m; // number of among constraints
Int[] s, e, l, u; // four vectors of m integers used for the among constraints.
Int len , h; // used for WEIGHTEDSPRINGYFOCUS
MODEL:
IntVar[] X; // size: n, domain {0, 1}
IntVar yc , zc ; // used for WEIGHTEDSPRINGYFOCUS

∀d ∈ 1..m, l[d] ≤
∑i=e[d]

i=s[d]
X[i] ≤ u[d]; // the set of AMONG constraints

WEIGHTEDSPRINGYFOCUS(X, yc , len , h , 0, zc);

Fig. 6 Model of the Cumulative Scheduling with Rentals problem

Search strategy. We use again two different search strategies: DomOverWDeg and
static lexicographical exploration; both with the lowest values assigned first.

Figure 7 confirms the gain of flexibility illustrated by Figure 1 in Section 3: allow-
ing h = 1 variable with a low cost value into each sequence leads to new solutions,
with significantly lower values for the target variable yc .

We generated instances having a fixed length of sub-sequences of size 20 (i.e.,
len = 20), 50% as a probability of posting an Among constraint for each (i, j) s.t.
j ≥ i + 5 in the sequence. Each set of instances corresponds to a unique sequence
size ({40, 43, 45, 47, 50}) with 20 different seeds.

We summarize these tests in Tables 5 and 6. Results with decomposition are very
poor. We therefore do not show them in these tables.
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Fig. 7 Pareto frontier for Scheduling with Rentals.

The performances in this problem with DomOverWDeg are very similar to the
sports league scheduling problem. The global filtering completely outperforms the
decomposition with GCC as we said. Regarding the first decomposition (D1), it be-
haves relatively well on the first four sets 40, 43, 45, 47 and slightly worse than the
global constraint in the set 50 (i.e. only 14 solved instances compared to 17 instances
with F).
Using the static branching on this particular problem was very beneficial. There is no
significant performance differences betweens the two models F and D1. Indeed, they
find the same number of solution in all instances with h = 0. The average runtime
is slightly but constantly better with the global filtering. The number of nodes is also
smaller. However, overall, there was no significant difference between the two mod-
els.
It should be noted that in both branching strategies, the standard deviation is better
with the global constraint than the decomposition.

6.4 Sorting Chords

We need to sort n distinct chords. Each chord is a set of at most p notes played
simultaneously. The goal is to find an ordering that minimizes the number of notes
changing between two consecutive chords.

Model. The full description and a CP model is in [12]. Figure 6.4 provides a pseudo-
code for this problem. The main difference here is that instead of minimizing either
zc or yc , we build a Pareto frontier over these two cost variables (the same way
performed with the previous benchmark), using WEIGHTEDSPRINGYFOCUS and its
decompositions. We generated 4 sets of instances distinguished by the numbers of
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Table 5 Scheduling with rentals using DomOverWDeg

40 43
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
h=0

F 20 40 122 135018 423579 1041 869 20 90 269 259805 800815 872 574
D1 20 59.09 210 212629 769672 1092 847 20 119 391 372541 1271169 937 665

h=1
F 20 95 176 341394 640856 2844 2300 20 252 689 801909 2235387 2556 1769

h=2
F 20 96 179 341134 631228 2792 2354 20 257 665 815084 2191171 2560 1791

45 47
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
h=0

F 20 212 960 565173 2507057 853 701 20 326 547 779999 1300376 716 223
D1 20 295 1405 840967 4006454 900 723 20 419 740 1038147 1876769 748 309

h=1
F 20 568 1455 1642111 3989712 2613 2598 19 1070 1744 2862135 4794331 2568 2180

h=2
F 20 594 1380 1696763 3797544 2588 2467 19 1119 1767 2978121 4621013 2561 2125

50
#sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev.
h=0

F 17 645 1444 1383185 3029220 676 329
D1 14 649 947 1425712 2075470 691 295

h=1
F 11 1534 1362 3774669 3020671 2448 1401

h=2
F 11 1618 1964 3953820 4409741 2431 1382

INPUT:
Int n; // number chords, indexed from 0 to n− 1
Int[][] costMatrix ; // size: n× n, matrix of costs between pairs of chords
Int len , h , k ; // WEIGHTEDSPRINGYFOCUS
MODEL:
IntVar[] Chords; // size: n, domain {0, 1, . . . , n− 1}
IntVar[] Costs; // size: n− 1, domain: all possible costs
Int nChange; // threshold from which a cost is considered as high
IntVar yc , zc ; // WEIGHTEDSPRINGYFOCUS
∀i ∈ 0..n− 2, TABLE(Chords[i], Chords[i+ 1], Costs[i]); // cost of each pair
ALLDIFFERENT(Chords);
WEIGHTEDSPRINGYFOCUS(Costs, yc , len , h , k , zc);

Fig. 8 Model of the Sorting Chords benchmark.
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Table 6 Scheduling with rentals using a static branching

40 43
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
h=0

F 20 13 27 60378 139508 1239 1147 20 25 60 98351 262913 1089 871
D1 20 16 31 80002 169747 1393 1210 20 30 75 133450 344122 1223 902

h=1
F 20 83 118 349495 522644 3096 2595 20 284 1021 1102987 4530456 2787 1803

h=2
F 20 83 118 349488 522638 3103 2575 20 285 1038 1102980 4530356 2791 1849

45 47
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
h=0

F 20 68 220 260331 882753 1094 930 20 91 213 309481 783447 932 396
D1 20 85 276 352155 1149913 1235 965 20 110 264 428014 1110529 1078 501

h=1
F 18 1037 631 3723494 2163719 2976 749 2 1205 202 3935339 865505 2560 743

h=2
F 18 1041 638 3723480 2163748 2977 772 2 1207 203 3935354 865522 2584 760

50
#sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev.
h=0

F 20 216 563 650832 1775355 893 728
D1 20 260 688 895516 2461464 1035 811

chords ({14, 16, 18, 20}). We fixed the length of the subsequences and the maximum
notes for all the sets then changed the seed for each instance.

Search strategy. As in the Sports League Scheduling benchmark, we
present the results obtained for each model, i.e., the model that uses
WEIGHTEDSPRINGYFOCUS and the models with its decompositions. The search
strategy is DomOverWDeg with the lowest values assigned first (Table 7). The static
branching performs very poorly on these instances and is therefore not shown here.

The main observation from Table 7 is that when h = 0, the first decomposition
D1 performs as good as the complete filtering in general. With 16 and 18 chords,
D1 finds an additional solution compared to the complete filtering F. The average
nodes, and the average nodes explored per second are very similar in both models.
The standard deviation is also very similar with all statics in general.
The decomposition using GCC performs much better than the previous problem but
it is outperformed by WEIGHTEDSPRINGYFOCUS. For example, on instances with
h = 2 using 18 chords, it finds 9 solutions whereas the complete filtering finds 25.
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Table 7 Sorting Chords

14 16
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
h=0

F 30 2 7 17577 73168 2923 5350 29 4 13 29963 109164 2737 3655
D1 30 2 6 15072 55030 2920 4841 30 5 14 35702 117407 2968 3604
D2 30 27 127 154422 739803 2437 3681 20 24 97 125863 522175 2380 2222

h=1
F 30 2 12 16224 112110 3707 12269 30 75 980 698888 10086454 4430 13202

D2 30 29 135 144228 682095 2252 3268 20 28 112 125375 526964 2107 2029
h=2

F 30 2 12 17237 112323 3649 12000 29 31 243 249125 2121349 3883 10085
D2 30 31 146 157560 752363 2223 3230 20 29 112 134773 549205 2163 1964

18 20
#sol Time Nodes Nodes/s #sol Time Nodes Nodes/s

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev.
h=0

F 24 23 80 117113 417085 2022 1864 10 639 2233 3415012 12383754 2849 2442
D1 25 59 206 337787 1213605 2283 2406 9 666 1727 3534231 9344656 3023 3214
D2 9 235 837 926145 3357408 1660 1594 3 252 572 844450 1877702 2202 982

h=1
F 24 397 2345 2500105 15264782 4123 9485 9 444 1109 2257348 6036524 3023 3215

D2 9 263 931 947522 3425814 1527 1199 3 284 674 859046 2017445 1932 855
h=2

F 25 336 1709 2122557 11238548 4468 11413 11 607 1719 3187854 9777345 2937 3120
D2 9 223 703 804368 2637317 1482 1248 4 384 728 1091963 2074681 1805 1097

7 Conclusion

We have presented flexible tools for capturing the concept of concentrating costs. Our
contribution highlights the expressive power of constraint programming, in compari-
son with other paradigms where such a concept would be very difficult to represent.
We have shown a connection between our constraint and ILP. Our experiments have
demonstrated the effectiveness of the proposed new filtering algorithms.
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