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ABSTRACT 
    Studying the concept of the vortex is an essential tool in 

the comprehension of fluid dynamics. Despite this, it is still 

very difficult to find a universal definition of a vortex. Several 

methods of detection and characterization of vortex structures 

has been developed and performed. Specifically tailored for 

PIV data, they present an important topic in modern 

experimental fluid mechanics. 

In fact, the performance of the method is related to its 

effectiveness in the velocity data analysis and to successfully 

detect and locate the vortices as well as calculate the 

characteristic vortex parameters. 

In the present study, we explore the efficiency of different 

vortex detection algorithms such as the vorticity , 2 and Q

criteria by studying the vortices structures in the wake of a 

confined square obstacle. 

Proper orthogonal decomposition (POD) of the velocity fields 

was used to extract the energetic contribution of the different 

instabilities modes. 

These methods were firstly applied to an experimentally 

two-dimensional instantaneous velocity fields obtained by 

Particle Image Velocimetry (PIV) technique. Then, in a second 

step, we tested these criterions on a numerical velocity fields 

determined from Lattice Boltzmann simulations and compared 

to experimental results. 

Keywords: Lattice Boltzmann Method (LBM); Experimental 

measurements; PIV; Vortex shedding; Detection criteria; 

Confined cylinder wake; POD. 
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1. INTRODUCTION
The confined flow around bluff bodies has received

considerable attention in recent years, due to its fundamental 

relevance. This type of geometry  have a variety of engineering 

applications in aerodynamics, wind engineering, electronics 

cooling and flow metering devices, etc. Bluff body cross 

sections that are often employed are circular and rectangular 

especially, square. The flow details behind these geometries 
depend mainly on Reynolds number and blockage ratio. Flow 

past a square cylinder resembles flow past a circular cylinder as

far as instabilities are concerned. However, the vortex 

formation region is significantly broader and longer for a 
square cylinder compared to the circular. At low Reynolds 

number, aspect ratio and end conditions play a significant role 
in determining the flow properties. The study on the effect of

aspect ratio in the literature has been largely focused to a 

circular cylinder (Rehimi et al. [1], Paranthoën et al. [2]). These 

experimental works have studied the wake of the cylinder:  the 

effect of the confinement and gap parameter  on the different 

flow regimes and the reorgonisation of the cylinder wake. 

Sushanta et al. [3] studied the sensitivity of flow patterns in the 
wake of square cylinder cross section to aspect ratio and 

orientation with respect to the mean flow (the incidence angle).

Numerical simulations are documented in the works of Breuer 

et al. and Turki et al.[4, 6]. These works, especially based on 

2D laminar flows simulations, have studied the effect of the 

Von Karman vortex in the wake behind the obstacle. 

In this paper, we have restricted our  attention to the range of 

Reynolds were exist a laminar Von Karman vortex street. The 

appears of this coherent structure is conditioned by the 

Reynolds number 


DUm .
Re  (

mU is the height averged 

velocity, D the obstacle height and  the kinematic viscosity)

and by two additional parameters due to the wall effect. The 

latter are the gap parameter 
D


 ( is the distance between

the obstacle and the nearest wall) and the confinment ratio 

H

D
r   (which H is the height of the channel). 

These coherent structures play an essential role in heat and 

mass transfer. Their interaction and the mecanism of 

generation/dissipation constitues a fundamental topic in fluid 

mechanics research. Many definitions of the concept of 

coherent structures have been proposed (Lugt et al., 1983; 

Chassaing et al., 2000) [7-8]. However, some definitions are 

still debated, and the most essential question with coherent 

structure includes: how do we detected the center of vortex and 

how do we define its limits? 

This search of the coherent structure definition has led to the 

development of the detection criterion. 

The present study reports experimental measurements of flow 
patterns in the wake downstream of a square cylinder localazed 

in a rectangular cross-section and centred in a channel, at low 

Reynold numbers. The main objective of this work is to study 

the influence of confinement on different regimes and the 

reorganisation of the flow in the cylinder wake. For this 

purpose, in the first step,  the vorticity , the Q and 2 criteria

have been applied to the PIV velocity fields. It is also essential 

to add that such configuartion is suitable for the validation of 

numerical simulations codes. Thus, the same criteria are 

applied, in the second step to a numerical velocity fields 

obtained by the Lattice Boltzmann Method simulation [22]. 

Proper orthogonal decomposition (POD) of the flow was used 

for filtring and extracting the energetic contribution of different 

modes. 

For the experimental investigation, a square obstacle of 10 mm 

height was placed in a channel with a rectangular cross section 

300x30 mm². The confinement ratio was fixed in this study to 

r=1/3 and the gap to =1.

NOMENCLATURE 

c Lattice speed 

D Height  of square obstacle  

f Distribution function 

f
eq

 Equilibrium distribution function 

H Height of channel 

L Length of channel 

M Number of spatial modes 

N Number of snapshot 

P Point of calculated criterion 

Q Detection criterion 

r Confinement ratio  

Re Reynolds number 

Rec Critical Reynolds number 

S Computational domain 

U Velocity flow 

Ux Axial velocity component  

Uy Radial velocity component  

U
~ Time-dependent fluctuant velocity 

U Averaged time velocity 

x,y Space coordinates 

Ufilt Filtered velocity 

Um Axial average velocity 

Greek letters 

2 Detection criterion 

Δ Gap 

 Spatial modes 

 Eigenvalue 

 Vorticity 

 Kinematic viscosity 

γ Gap parameter 

 Temps de relaxation 

Abbreviation 

LBM Lattice Boltzmann Method 

PIV Particles Images Velocimetry 

POD Proper Orthogonal Decomposition 

2. GENERALIZED LATTICE BOLTZMANN 
METHOD

Lattice Boltzmann method is a recent numerical method 

alternative to the classical techniques such as finite-volume, 
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finite-element and finite-difference for solving Navier-Stokes 

equations. 

This method treats the fluid on a statistical level, simulating the 

movement and interaction of single particles by solving a 

discrete velocity Boltzmann equation on a particle distribution 

function noted f(x,c,t). 

With the BGK approximation and single relaxation time, this 

equation can be written as:                              (1) 

The discretized form is given by:                                 (2) 

The right term of Eq. (2) represents the collision process 

through a relaxation time  , while the left one is the streaming 

process. 

Many authors studied different approaches to write the 

collision process and the simplest one in order to obtain a 

linearized form with a single relaxation time. This form,  was 

introduced by Bhatnagar, Gross and Krook (BGK)  [18]. 

The common notation used for Lattice pattern is refered to the 

dimension of the problem and the number of speed DnQm 

where n represents the dimension of the problem and m the 

speed models. 

In 2D problems, there are generally two types of Lattice 

patterns: square lattice and hexagonal lattice suggested in the 

literature. Generally, for LBM computation, an equidistant 

orthogonal Lattice is chosen and on each lattice node, the 

distribution function f  is stored and updated on each new time 

step. 

As usual, the 9-velocity square Lattice is the most widely used. 

In fact, numerical studies proved that both D2Q9 and 7-velocity 

hexagonal lattice D2Q7 have sufficient Lattice symmetry, 

which is a dominant requirement for recovery of the correct 

flow equations [19] and recent studies have shown that D2Q9. 

It usually gives more accurate results than that based on 

hexagonal Lattice [20]. 

Hence, we have used in this study the 9-velocity square lattice 

D2Q9, on which each particle moves one Lattice unit only 

along the eight links indicated with 1-8. The 0 indicates the rest 

particles with zero speed and the discrete velocity vector of 

particles is defined by: 

  
                                                                                                                 (3) 

where        is  the Lattice speed, 
eq

f  is the equilibrium 

distribution functions (EDFs) that plays an essential role in the 

Lattice Boltzmann Method and recovering the Navier-Stokes 

equations [18]. 

This equilibrium distribution function can be considered as a 

Gaussian quadrature of the Maxwell-Boltzmann continuous 

distribution function, which is expanded as a Taylor series in 

macroscopic velocity to its second order to recover 

incompressible Navier- Stokes equation. According to He et al. 

[21], it is given by the following form: 

 2

2 4 2
1

2 2

ieq i

i j i

s s s

c .uc .u u²
f ( x ,t )

c c c
 

   
 

   (4) 

This local EDF is computed at each time step for every node 

from the local flow velocity, the fluid density  , the Lattice

geometry weighting factor 
iw  and the sound velocity cs. 

In this equation, 
iw represent the weight coefficients and cs is 

called the sound velocity in LBM, which is related to c and
iw . 

For D2Q9 model, we have [22]: 

iw =1/9 for the principal directions: i=1,2,3,4 

iw =1/36 for diagonals: i=5,6,7,8 

 and 
0w  = 4/9. 

At each simulation time step, the density   and the velocity

field u  are respectively defined in terms of the particle 

distribution function as follows:           (5)                (6) 

The kinematic viscosity of the fluid is given by:

2 1

2
s x   
 

   (7) 

The great progress of the LB Method during the last decades is 

due to its many advantages for fluid dynamics simulation. 

In fact, only a loop of two steps is implemented during 

programming: the collision and streaming step which can 

recover the nonlinear macroscopic advection terms. Also, LBM 

is a linear equation, where nonlinearity is implicitly imbedded 

in the collision operator. 

For incompressible flow, the pressure satisfies a simple state 

equation unlike the common CFD method, solving Poisson 

equation becomes unnecessary [12]. 

The pressure is then defined by the following state equation as:                    (8) 

3. EXPERIMENTAL SET UP AND MEASUREMENT
TECHNIQUES

The experimental device is a hydraulic channel made up 

of a transparent Plexiglas (figure. 1). The length of the test-

section is L=3 m, the width is l=0.3 m and H=0.03 m in height. 

A square obstacle (of dimensions 0.01x0.01 m²) is placed in the 

test-section perpendicularly to the mean flow direction at a 

distance lo=1.6m from the entry. The gap is γ=Δ/D=1, were Δ is 
the distance between the square and the nearest wall. The 

confinement ratio r=D/H is fixed at r=1/3. The mean flow 

velocity flow in the channel section upstream the obstacle was in 

the range 0.2 to 1.8 cm/s. 
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In the exit of the test-section, two Brooks flowmeters (range 

from 0 to 0.530 m
3
/h and from 0 to 1.17 m

3
/h) are assembled in 

parallel in order to measure the liquid flowrate for a range of 

Reynolds numbers included between 20 < Re < 400. The liquid 

is then recovered in a storage tank of 0.5 m
3
 of capacity. A pump 

allows filling a tank of 0.15 m
3
 capacity, where the water level is 

maintained constant by an overflow.  

A PIV system has been used to determine instantaneous velocity 

fields downstream the square. It was composed of a CCD 

camera of 1600x1184 pixels resolution (Dantec Dynamics Flow 

sense), a pulsed ND-Yag laser (New wave solo). The whole 

system is driven by the “DANTEC” software “Flow Manager”. 
The flow seeding was performed using polyamide particles with 

20 m of diameter.

Figure 1. Schematic view of the used hydraulic channel 

Figure 2. Physical model 

A 45° mirror was used to reflect the horizontal laser plane 

vertically at z = 0. The physical field of view of camera is 

81.73x 61 mm². A mask was applied to retain only 30 mm in the 

y-direction. For the measurements, the interrogation's zones 

were taken equal to 32x32 pixels. An adaptive cross correlation 

was used with an overlap of 50%. The sampling frequency was 

fe=15Hz for a duration of 20 to 40s. 

4. COHERENT STRUCTURES DETECTION
    Many criteria used in practice are mainly deduced from 

the velocity gradient tensor. The objective of these criteria is to 

characterise the full coherent structure. 

The vorticity tensor, as an invariant Galilean, appears as the 

most widely choice to identify the coherent structures in the 

flow. Hussain et al. [9] proposed that the coherent structure is a 

turbulent zone in which, instantaneous vorticity is correlated 

with the phase of the flow. 

The vector 


 is used to compute the rotation rate in the flow. It 

is defined  as  U



2

1
where 


 is the rotationel operator. 

Strawn et al. [10] defined the center of the vortex as a local 

maximum of the vorticity module written for a 2D flow as 

follow: 




















y

U

x

U
xy

2

1         (9) 

Jeong and Hussain [11] studied the use of vorticity  and show

that the shear and the rotation of the vortex are not 

distinguished by this criterion. In our case, the presence of 

shear at the upper and lower walls of the channel deforms the 

vorticity pattern of the coherent structures. 

Based an this observation, another criteria is proposed. Known 

under the name of the Q criterion, it was proposed by Hunt et 

al. [12]. It can be interpretd as a balance between the rotation 

rate and the strain rate and can not be affected by the local 

shear. For a 2D flow, this Q creterion is defined as follow: 

































































22

.2
2

1

y

U

x

U

y

U

x

U
Q xyxy          (10) 

The vortex structures are identified by the positive iso-values of 

Q, while their centres are identified by the maximum values of 

this criterion. 

Graftieaux et al. [13] developed a kinematic criterion noted 1

for the vortex center identification considering only the 

topology of the flow. Although it is not a Galilean invariant, 

this criterion has presented a simple and robust method for the 

vortex structures identification. Thereafter this criteria was 

improved to became a Galilean invariant. This new criterion 

named 2 has the advantage to consider the local vortex 

convection. The extremum is used for the vortex identification. 

This criterion gives accurate results in comparison with the 

vorticity magnitude or the Q criterion and it is defined as: 

  
dS

PUMUPM

ePUMUPM

S
SM

z .
)(

~
)(.

.)(
~

)(1
2 

 


          (11) 

where dSMU
S

PU
SM

.)(
1

)(
~




 , ez is a unit vector perpendicular to 

the velocity map, P is the point where the criterion is calculated 

and S is the surface arrounding the point P. S should be as small 

as possible since for a large S, a small scale is filtred. For our 

case the size of S is: S=8.xy.

D 

         y

x
    H 

   H/2 

L l

Filling 

 tank 

Obstacle 

Pump Storage 

tank 

Flowmeters 

y 

 x 
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5. PROPER ORTHOGONAL DECOMPOSITON  OF
THE FLOW (POD)

        The velocity fields obtained from PIV measurements are 

generally noised. By applying vorticity  or velocity gradient

tensor based on the velocity derivatives, high noise frequencies 

are amplified. 

Using filter is not adequate in many cases. For these reasons, the 

POD applied to the flow velocity fields seems as a good 

solution. It takes into consideration the energetic distribution of 

the flow for the acquisition duration. 

Proper Orthogonal Decomposition (POD) brings new 

opportunities because this post-processing extracts spatial or 

temporal structures using a rigorous mathematical 

decomposition basis, which breaks free from all arbitrary steps. 

It became popular for aerodynamics research in the 2000s, 

starting with Tang et al. [14] works, although it was first

proposed in 1960 by Lumley [15] in the context of coherent 

structure's investigations. 

The basic purpose of POD is to extract the most probabilistic 

structures in an energetic point of view from a statistical series of 

signals. Its principle is the creation of a mathematical model that 

decouples the spatial from the temporal variations in the flow. 

This modal base needs only few modes to describe all principal 

aspects of the signal (majority of the large scale behaviour). 

Sirovich [16] has introduced the method of snapshots as a way to 

reduce the computational requirements of the POD calculations, 

especially when the spatial data size is much larger than the 

number of images like PIV measurements. For these reasons, we 

used snapshot in this work. 

Considering the measurements obtained by PIV, it yields, 

generally, N snapshots of a 2D section of the flow field taken at 
the sequence time t1,…,tN. These snapshots will usually give

feature information on the velocity vectors [U(x,y,t1),…, 
U(x,y,tN)].  

A 2D flow field described by this velocity can thus be expressed

as: 

),,,(
~

),(),,,( kk tzyxUyxUtzyxU            (12) 

where ),( yxU  is obtained by time averaging of the flow field

over N time instances, while ),,,(
~

ktzyxU  is the time-dependent 

fluctuating velocity field.

The Proper Orthogonal Decomposition procedure is to find a 

family of vectors called modes  )()1( ,..., n  on which the

fluctuating terms are decomposed as following:





N

n

n

k

n

k yxtatzyxU
1

)()( ),().(),,,(
~              (13) 

where the temporal coefficients )()(
ta

n
 and the spatial modes 

),()(
yx

n  which verify the following relationship: 

mnn

N

n

j

m

j

n
tata ,

1

)()( .)().( 


 (14) 









mnif

mnif
mn

0

1
,

where n is the eigenvalue associated to the spatial mode

),()(
yx

n . 

The modes verify the relationship: 

mn

D

mnmn
dydxyxyx ,

)()()()( ..),().,(,   (15) 

To filter the intantaneous PIV velocity fields, the equation (13) 

is truncated at a reduced order model M << N, which is chosen 

as a compromise between model simplicity and model 

accuracy.  

The filterd velocity is written as followed: 





M

n

n

k

n

kfilt yxtayxUtzyxU
1

)()(

. ),().(),(),,,(  (16) 

6. RESULTS AND DISCUSSIONS

6.1 Flow modes behind the obstacle 

An example of a velocity profile obtained by 2D PIV 

measurements upstream of the square obstacle is shown in 

figure 3. In order to verify that the studied flow is developed 

and symmetrical in the channel, we compare the obtained 

profile with the theoretically solution of Lundgren and Sparrow 

[17]. The measurements are in good agreement with the 

theoretical results. 

To characterize the flow and the various coherent structures 

present in the flow, we used the PIV measurements obtained by 

varying the Reynolds number. In fact, for a fixed gap and 

confinment ratio, only the Reynolds number controls the flow 

regime. In our case, it is defined as /.Re DUm  where 
mU  is 

the average axial velocity in the inlet  channel flow and   the 

kinematic viscosity of the flow. The regimes downstream of the 

square obstacle, similar to those of an obstacle placed in an 

infinite medium appears by varying the Reynolds number. 

These schemes are also comparable to those obtained 

numerically by various authors cited in the literature. 
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Figure 3. Velocity profiles in the upstream of the obstacle (z=0) 

Streamlines and velocity magnitude are shown in figure 4 for 

three different Reynolds number, in which each one 

characterise a specific regim of the flow. Re=50 for the 

recirculation regime, Re=80 for the critical regime and Re=120 

for the periodic regime. 

Figure 4. Instantaneous Streamlines and axial velocity contours PIV 

measurements: (a) Re=50; (b) Re=80; (c) Re=120 

In the second part, the velocity profiles were compared with 

numerical ones obtained by the Lattice boltzmann Method 

simulation. An example of experimental velocity profile, 

superposed to the numerical one  obtained by LBM simulation, is 

illustrated by the figure 5.  

For the Reynolds number Re=80 (above the critical regime), and 

for a longitudinal position close to the obstacle x/D=2, the  axial 

and radial velocity profiles are in accordance with the numerical 

results. The velocity profile of Ux according to the y/D position, 

presents two peaks on the higher and the lower part of the 

obstacle (y=±D), and then converges towards zeros on the two 

wall sides. These peaks show well the presence of two vortices 

on the same level of the x value. 

Figure 5. Experimental and numerical radial velocity profiles at 

x/D=2 for Re=80: (a) Ux; (b) Uy  
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6.2 Coherent structure detection Criteria 

         In this section, different criteria were applied at first to the 

PIV velocity fields, then to the numerical velocity fields 

obtained by the LBM simulation. 

For this reason, we fixed a specific Reynolds number Re=90  

for a periodic regime, which is characterized by an instable 

wake and the  appearance of the  von Karman vortices. 

The streamlines and the axial velocity magnitude contours 

(figure 6) show clearly the oscillatory form of the wake. 

However, the von Karman vortices are not well highlighted as 

they are embedded in the mean flow. The vorticity fields brings 

up two families vortex well detectable (figure 7).  

Figure 6. Instantaneous streamlines and velocity magnitude 

contours obtained from the LBM simulation for Re=90 

Figure 7. Instantaneous vorticity contours obtained from the LBM 

simulation for Re=90 

Using the vorticity  as a creterion for the structure's

detection, is not effective in the presence of shearing in the 

channel near the wall. Hence, we adopted Q and  Γ2 criteria in

order to correctly identify the vortices.  

Figure 8 shows the Q criterion applied to the PIV velocity 

fields, at first, then to the numerical (LBM) velocity fields. This 

criterion brings up the structures that we can define their limits 

by the nearest values around the vortex centre, which is 

represented by the maximum of Q values. The comparaison 

between the two results shows a good agreement. 

The Γ2 criterion applied to PIV and numerical velocity fields

(synchronized at the same time), shows the presence of two 

types of vortices (figure 9). A first family (P1, P2) mainly 

composed of two counter-rotating vortices similar to those of 

von Kármán and alternatively detached behind the obstacle. 

Containment, created by the channel walls, leads to a 

significant change in the vortex trajectory as well as in the 

structure of the wake. 

 For example, the passage of the detached vortex on the upper 

side (P1), creates a change in the space properties near the top 

wall. This latter, opposes it by creating a vortex with inverse 

direction, (P1’) which is ejected by forcing (P1) through the

channel along the y-axis towards the bottom wall.  

The same phenomenon occurs for detached vortex (P2) on the 

lower side and the vortex (P2’) is ejected towards the higher

wall. This proves that a vortex tends to roll and not slide on a 

wall.   

Figure 8. Q criterion for Re=90: (a) PIV velocity field; (b) LBM 

simulation velocity field 

It should be noted that the distribution of these vortices is 

different from the infinite medium case. In fact, the vortex (P1) 

detached from the upper wall does not reach directly the low 

wall of the channel, but it encounters, first, a vortex (P2), which 

creates a coalescence between the vortices (at x=6D for this 

case). 

Figure 9. 2 criterion for Re=90: (a) PIV velocity field; (b) LBM

simulation velocity field 
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It is to be noted also that the confinement reduces the 

expansion of the vortices in the transverse direction of the flow. 

An example of 2 profile at a specific zone of the channel 

obtained from the PIV measurements, is shown in figure 10. It 

is in good accordance with result obtained when the 2 criterion 

is applied to velocity fields obtained by the LBM simulation. 

Figure 10. Comparison between the 2 experimental and

numerical LBM results in the horizontal centreline of the 

channel for Re=90 

6.3 POD DECOMPOSITION OF THE FLOW 
       The POD was applied to the experimental PIV 

measurements obtained for a number of snapshots N=300. It 

was verified that number of snapshots N=300, is largely 

sufficient for the statistcal convergence of the data for a given 

Reynolds number. The four first modes are directly related to 

the von Karman structures and are the most energetic (figure 

11). The reconstruction of filtered data on the basis of this 

modes permits to recuperate more than 90% of the fluctuating 

flow energy as 
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It should be noted that the POD was applied to two positions 

separetly. For this reason, the issued spatial modes are 

interpreted independently. 

The spatial modes )(n are paired for Re=90 and present a

spatial periodicity (figure 12). 

The  right columns of figure 12 show the spatial  modes for  the 

measurements taken in the  position 2 far from of the obstacle. 

The spatial modes relative to the zone near the obstacle 

(position 1) are shown in the left column of figure 12. The 

coherent mode can be clearly observed mainly in the position 1 

where the von Karman vortex street is more intense.  

Figure 11. Distribution of total energy starting from the spatial 

mode 0 

Figure 12. The first four modes obtained downstream of the 

cylinder for Re=90 (vorticity maps): left column for position 1 and 

right column for position 2 of measurements 
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7. CONCLUSIONS

  In this work, we presented a study of the wake behind a 

square obstacle in a confined environment. Experimental 

results of velocity fields issued from PIV measurements were 

used and compared with numerical ones obtained by Lattice 

Boltzmann simulations. The comparison between results shows 

a good accordance. The presence of the square obstacle in 

channel creates, from the Re > Rec the von Kármán vortices 

interacting with the walls to form secondary vortices advected 

downstream the obstacle. These results are important to show 

the fundamental difference with von Kármán vortices generated 

in unconfined medium. 

Thus, we applied, firstly, the structure criteria detection (, Q

and Γ2) to the instantaneous experimental and numerical

velocity fields. 

The objective is to properly extract and describe the dynamics 

of vortex structures present in the flow, and which play a 

significant role in transfer and transport phenomena. 

The obtained results exhibit the interactions between a vortex 

and a wall, which are characterized by the creation of a 

secondary one at the wall with opposite vorticity signs. This 

latter is advected to the downstream then coalesce with the 

opposite vortices. 

The decomposition of the velocity field that has been

implemented in this research has shown that the relevant 

structures of the field can be described with a limited number of

modes (four) though capturing more than 90% of the kinetic 

energy of the complete field (mean and fluctuating fields).

Subdomain 1 (near the obstacle) has revealed the presence of 

spatial modes paired where the von Karaman vortex street is 

mainly intense.  

The LBM simulation results are validated with our 

experimental ones which highlights the accuracy of this LBGK 

method for simulation of flow Dynamics behind bluff bodies.  
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