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 

Abstract— The paper deals with elastostatic calibration of a 
serial industrial robot. In contrast to other works, all 
compliance sources associated with both links and joints 
elasticity are taken into account. Particular attention is paid to 
the model parameters identification using end-point 
measurements only. For such experimental setup, the model is 
transformed into the form suitable for calibration with the 
sufficient rank of the corresponding observation matrix. The 
main contributions are in developing algebraic, physical and 
heuristic techniques that allow user to obtain complete model 
with minimal number of parameters. The advantages of the 
developed approach are confirmed by an experimental study 
that deals with identification of the elastostatic model 
parameters for a 6 dof serial industrial robot. 

Keywords— Robotic manipulator, elastostatic calibration, 
parameter identifiability, model reduction, stiffness modeling, 

I. INTRODUCTION 

Application area of robotic manipulators in industry is 
progressively increasing, they become attractive in many 
technological processes, including precise machining. In such 
a process, the robot is usually subject to essential external 
loadings caused by the machining forces. These forces may 
lead to significant deviation of the end-effector position. This 
feature becomes extremely important when the accuracy 
requirements are very high. In this case, stiffness modeling of 
robotic manipulator and related compliance error 
compensation become the key issues allowing user to 
improve the positioning accuracy [1-4].  

At present, there are three major methods for the 
manipulator stiffness modeling: the Finite Element Analysis 
(FEA), the Matrix Structural Analysis (MSA), and the Virtual 
Joint Method (VJM). Among them, the VJM-based technique 
provides reasonable trade-off between the model accuracy 
and computational complexity, it is able to describe the 
elastic properties of the manipulator elements by 6x6 
compliance matrices. Because of its advantages it will be 
further used in this paper. However, evaluation or 
identification of the stiffness model parameters is not a trivial 
problem that has not been paid enough attention yet. 

The main difficulty of elastostatic calibration is that direct 
application of the VJM-based method gives excessive 
number of parameters whose impact in the robot positioning 
accuracy essentially differ (mainly because of their 
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magnitude). Furthermore, straightforward application of this 
technique produces redundant model that is not suitable for 
calibration. Particularly, the whole set of the elastostatic 
parameters for 6 dof manipulator contains 258 values and 
leads to the fail of the numerical routines used in calibration 
that is caused by singularity of the relevant observation 
matrix. Similar problem arises in geometric case where the 
concept of complete-irreducible-continues model has been 
introduced. To obtain such a model relevant algebraic tools 
for the model reduction have been developed [5-6]. This idea 
can be also used in the elastic case, however, here complex 
couplings between the model elements make this step non-
trivial. Besides, in elastostatic calibration, an additional 
difficulty is caused by essential difference in the parameter 
magnitudes. As follows from our experience, corresponding 
identification results could violate fundamental physical 
properties of the stiffness matrices. For this reason, a new 
notion of practical identifiability has been introduced in our 
previous work [7] that allows obtaining reliable results in real 
industrial environment. This paper further develops this 
research and pays particular attention to generation 
theoretically identifiable elastostatic model. In the case of 
elastostatic calibration, this step is more complicated 
comparing with the geometric one (because of complex 
coupling between the model elements) and requires 
additional investigations. 

II. METHODOLOGY OF ELASTOSTATIC IDENTIFICATION

To estimate the matrices describing elasticity of the 
manipulator components (i.e., compliances of the virtual 
springs presented in the VJM-based modeling [3]), the 
elastostatic model can be written as 

  (i) (i) (i)T
θ θ θ1

·n

i
  J k Jt w  

where t  is the vector of the end-effector displacements 
under the loading w , the matrices (i) (i) 1

θ θ( )k K  denote the 
link/joint compliances that should be identified by means of 
calibration, and the matrices (i)

θJ are corresponding sub-
Jacobians obtained by the fractioning of the aggregated 
Jacobian (1) (2)

θ θ θ[ , ,...]
T T

T J J J . For the identification purposes, 
this expression should be transformed into the form, where 
all desired parameters (elements of the matrices 

(i)
θ , 1,2,...i k ) are collected in a single vector 

(1) (1) ( )
θ11 θ12 θ66( , ,... )n

k k kπ . It yields the following linear equation 

 ( , | )· A q wt π π  

 1 21 2( , | ) [ , ,...., ]T T

mm

TA q w J J w J J w J J wπ  

is so-called observation matrix that defines the mapping 
between the unknown compliances π  and the end-effector 
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displacements t  under the loading w  for the manipulator 
configuration q , 

i
J  is the column of Jacobian matrix θJ .  

Taking into account that the calibration experiments are 
carried out for several manipulator configurations defined by 
the actuated joint coordinates , 1,

j
j mq , the system of 

basic equations for the identification can be presented in the 
following form 

 ( , | ) ; 1· ,
j jjj

j m t π π εA q w  

where 
j

ε  denotes the vector of measurement errors. For 
further convenience, let us also present equation (4) in a the 
matrix form 

 ·( , | )
a a aaa
 A q wt π π ε  

where the subscript "a" indicates that matrices/vectors 
aggregate corresponding components for m  configurations. 
Below, for the presentation convenient the matrix 

( , | )
a aa

A q w π will be also referred to as A , where the 
subscript defines the parameters set for which the observation 
matrix is computed. Further, using these notations and 
assigning proper weights for each equation, the identification 
can be reduced to the following optimization problem 


1
( ) ( ) minm T T

j j j jj
F  
    π

A π t Aη tη π  

where η  is the matrix of weighting coefficients that 
normalizes the measurement data, ( , | )

jj j  A q wA π . This 
minimization problem yields the following solution  

    1

1 1
ˆ ·m mT T T T

j j j jj j   



 
  π A A A tη η η η  

If the measurement noise is Gaussian (as it is assumed in 
conventional calibration techniques), expression (7) provides 
us with a unbiased estimates for which  ˆE π π .  

It can be proved [8] that the best results in terms of the 
identification accuracy are achieved if 1η Σ , where the 
matrix  2 ( · )T

EΣ ε ε  describes the statistical properties of 
the measurement errors. It leads to the following covariance 
matrix of the manipulator compliance parameters  

   1
1

1
ˆcov( ) m T T

j jj  


 


 π A Σ Σ A  

Such assignment of the weighing coefficients η  also allows 
us to avoid the problem of different units in the objective 
function (6), which arises in straightforward application of 
the least-square technique to the robot parameters 
identification if the measurement system provides both 
position and orientation data. It should be noted that this 
particularity is usually omitted in conventional robot 
calibration. Another way to improve the identification 
accuracy is related to the proper selection of manipulator 
measurement configurations  , 1,

j
j mq  that is also known 

as the calibration experiment planning [9], which directly 
influences on the observation matrices ( , | )

j j
A q w π  and on 

the covariance matrix (8). 
It is clear that expression (7) gives reliable estimates of 

the parameters π  if and only if the matrix 
1

1

m T T

j jj  
 

 A Σ Σ A  is invertible. It leads to the problem of 
the parameter identifiability that have been studied by a 
number of authors for the problem of geometrical calibration 

[5-6]. Relevant techniques are based on the information 
matrix rank analysis (via either SVD- or QR-decomposition). 
However, in real industrial environment where the 
measurement not is non-negligible, the identifiable 
parameters are not equivalent in terms of accuracy (both 
absolute and relative) and expression (7) can give rather 
surprising results for some of them. This motivates revision 
of the above mentioned notion (parameter identifiability) and 
its extension taking into account the identification accuracy 
defined by the covariance matrix (8). In the following sub-
sections, the notion of practical identifiability is introduced. 
Besides, existing model reduction techniques (algebraically 
approach) have been developed mainly for geometrical 
calibration. Although, the main idea from geometric 
calibration can be also used in the case of elastostatic one, 
numerical routines should be revised since in elastic 
calibration couplings between the model elements are more 
complex.  

III. BASIC ASSUMPTIONS AND TERMINOLOGY  
Let us assume that the vector of desired elastostatic 

parameters π  should be identified from the set of the linear 
equations (4) whose least square solution is defined by the 
expression (7), where the observation matrices ( , | )

j j
A q w π  

are computed for certain set of measurement configurations 
 jq  and loadings  jw . Depending on the matrix set 
 jA , corresponding system of linear equations can be 
solved for π  either uniquely or may have infinite number of 
solutions. In general, if the information matrix is rank-
deficient, a general solution of the system (4) can be 
presented in the following form 

  ˆ · · 
    π A IB A A λ  

where 
1

m T T

j jj   
 η ηA A A , 

1

m T T

j jj   
  η ηB A t , the 

superscript "+" denotes the Moore–Penrose pseudoinverse 
and λ  is an arbitrary vector of the same size as π . Using the 
later expression, all desired parameters contained in the 
vector π  can be divided into the following groups [6] : 

G1:  Identifiable parameters that are independent from 
the arbitrary vector λ  and can be obtained uniquely from (9);   

G2:  Non-identifiable parameters that can take on any 
value without influence on the right-hand side of the equation 
(2) and  cannot be computed from (9) in a unique way;  

G3:  Semi-identifiable parameters that have influence on 
the right-hand side of the equation (2), but cannot be 
computed uniquely from (9).  

In this paper, in contrast to previous works, this 
classification is enhanced taking into account practical issues 
related to the limited precision of the measurement system. 
The main idea is to compare the absolute value of the 
estimated parameter with the range of possible fluctuations of 
the estimate caused by the measurement noise. For 
computational reasons, it is convenient to introduce a 
numerical indicator similar to the signal-to-noise ratio in 
communication, which is defined as follows 

 ˆ , 1,2,.../
i i i

i    

where 
i

  is the standard deviation of the parameter estimate  
ˆ

i
  extracted from the diagonal of the covariance matrix (8). 
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It is clear that 
i

 can be treated as the inverse of the relative
accuracy, which allows us to avoid the problem of division 
by zero. In the following sections this indicator will be 
referred to as parameter-to-noise ratio.  

Using the above defined indicator, the set of parameters 
belonging to the group G1 (theoretically identifiable) can be 
further divided into three subgroups: 

G1+:  Practically identifiable parameters, for which the 
accuracy indicator is high: 0i

   ; 
G1-:  Practically non-identifiable parameters, for which 

the accuracy indicator is low: 0i
   ;  

G1~:  Practically semi-identifiable parameters, for which 
the accuracy indicator is intermediate: 0 0i

     . 
An open question however is related to justified assigning 

of the upper and lower bounds 0
  and 0

 . From practical 
point of view, it is reasonable to use 0 5    and 0 2   , 
which is in a good agreement with the quantiles of the normal 
distribution. However, the user may modify these values in 
accordance with the specificity of the problem of interest. 

The above presented definitions allow us to revise the 
concept of "suitable-for-calibration" model that in previous 
works included all parameters of the group G1. In this work, 
this model is limited to include only parameters of the 
subgroup G1+ that can be estimated with reasonable accuracy 
and provide good approximation of the original complete 
model. The following subsections address different aspects of 
model reduction allowing us to obtain the desired model 
suitable for the elastostatic calibration. 

IV. MODEL REDUCTION: PHYSICAL APPROACH ( π π )
Straightforward approach to the manipulator stiffness 

modelling leads to the exhaustive but redundant number of 
parameters to be identified. For instance, each links is 
described by a 6 6  matrix that includes 36 parameters that 
are treated as independent ones. However, as follows from 
physics, number of the pure physical and independent 
parameters is essentially lower. Hence, there are strong 
relations between these 36 parameters but this fact is usually 
ignored in elastostatic calibration. Besides, due to 
fundamental properties of conservative system, the desired 
compliance matrices should be strictly symmetrical and 
positive-definite. In addition, for typical manipulator links, 
the compliance matrices are sparsed due to the shape 
symmetry with respect to some axis, but this property is also 
not taken into account in identification of the elastostatic 
parameters.  

To take advantages of the compliance matrix properties 
and to increase the identification accuracy, three simple 
methods can be applied that allows us to reduce the number 
of parameters to be computed in the identification procedure 
(7). They can be treated as the physics-based model reduction 
techniques and formalized in the following way.  

M1:Symmetrisation. For all compliance matrices k  to 
be identified, replace the pairs of symmetrical parameters 
 ,

ij ji
k k  by a single one ,

ij
k i j .

For each link, this procedure is equivalent to re-definition 
of the model parameters vector in the following way  

 · π M π  

where the binary matrix M  of size 36 21  describes the 
mapping from the original to reduced parameter space. It is 
clear that this idea allows us to reduce the number of links 
compliance parameters from 36 to 21 (and from  258 to 153 
for the entire 6 d.o.f. manipulator).  

M2:Sparcing. For all compliance matrices k , eliminate 
from the set of unknowns the parameters 

ij
k  corresponding to 

zeros in the stiffness matrix template 0k  derived analytically 
for the manipulator link with similar shape. 

To derive desired template matrix it is convenient to use 
any realistic link-shape approximation. For example using the 
trivial beam [10], the desired template can be presented as  

 0

* 0 0 0 0 0
0 * 0 0 0 *
0 0 * 0 * 0
0 0 0 * 0 0
0 0 * 0 * 0
0 * 0 0 0 *

 
 
 
 
 
 
  

k  

where the symbol "*" denotes non-zero elements. It allows 
further reducing the number of the unknown parameters from 
21 to 8, taking into account only essential ones from physical 
point of view. It can be also proved that the template (12) is 
valid for any link whose geometrical shape is symmetrical 
with respect to three orthogonal axes. But it is necessary to be 
careful if this property is not kept strictly.  

All joint compliances cannot be identified separately and 
should be included in the compliance matrix of previous link 
by means of modification corresponding diagonal elements. 
These modifications touch the values that are identified and 
elimination corresponding columns in the observation matrix 

M3:Aggregation. Eliminate from the set of model 
parameters the ones that correspond to joint compliances 
before which there is a compliant link. In terms of parameters 
identifiability the compliance of such joints cannot be 
separated from the links.   

Summarizing these methods, it should be mentioned that 
the above presented methods essentially reduce the number 
of parameters to be identified, but they do not violate the 
mode completeness, i.e. the ability to describe any deflection 
caused by the loading. However, the reduced model may still 
have some redundancy in the frame of entire manipulator.  

From the geometrical calibration it is known that in spite 
of the fact that redundant model is suitable for direct and 
inverse computations it cannot be used in identification since 
the observation matrix does not have sufficient rank. Similar 
problem arises in elastostatic calibration where some stiffness 
coefficients of adjacent links cannot be identified separately. 
The problem of construction complete and irreducible model 
has been widely studied in geometrical calibration but have 
never been in the focus of elastostatic calibration. 

V. MODEL REDUCTION: ALGEBRAIC APPROACH (  π π ) 
The physical approach described in previous sub-section 

allows us essentially reducing the number of model 
parameters. However, it does not guarantee that the obtained 
model is suitable for calibrations (i.e. that the model is non-
redundant and the number of parameters is equal to the 
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observation matrix rank). In practice, the following inequality 
is often satisfied:    dimrank  πA π . To overcome the 
problem, this sub-section presents some algebraic tools aimed 
at further reduction of the model parameter set from π  to 
π , which ensures full identifiability: 

      dimrank rank   π πA A π  

They are based on the partitioning of the parameters set π  
into three non-overlapping groups (identifiable, non-
identifiable and semi-identifiable), which either eliminated 
from the model or reduced to ensure the equality (13).  

To introduce relevant algebraic technique, let us apply the 
group singular value decomposition (SVD) and present the 
aggregated observation matrix  , |

a a a
A q w π  as the 

product of three matrices · · TU Σ V . Here 1[ ,... ]
m

U U U  and 
1[ ,... ]

v
V V V  are orthogonal matrices of the size m m  and 

n n  respectively whose columns are denoted as 
i

U  and 
j

V ; the second factor Σ  is an rectangular diagonal matrix of 
the size m n  containing r  positive real numbers 

1 2, ,...
r

    in descending order;  dim
a

m  t  is the 
number of rows in the observation matrix (i.e. number of 
equations used for the identification),  dimn  π  is current 
number of the model parameters, and r  is the rank of the 
aggregated observation matrix  , |

a a a
A q w π . It is clear 

that r  defines the maximum number of parameters that can 
be identified using given set of configurations  iq  and 
wrenches  iw . 

Further, after substitution of this decomposition into (5) 
and left-multiplication by TU , the system of m  identification 
equations (5) can be rewritten as · · ·T

a

T   V π U t  or, in 
more detailed form, 



     

1
1 1

0

· · ·0

T T

r n

a
r T T

n m
m r r m r n r






    

                          

V U0
π t

V U0 0
 

where the number of equation is equal to n  and corresponds 
to the dimension of vector π  (it is obvious that n m ). 
Taking into account particularities of the sparse matrix Σ  
(with r  non-zero elements only) it is possible to rewrite the 
system (14) in the form 


; 1,2,...· · ·

·
,

; 1,...,·

T

i i

i

i a

T

T

a

i r

i r n

   

  



 

V π t
π t

U
0 U

 

where the second group of m r  equations should be 
excluded from further consideration because relevant 
residuals do not depend on the parameters of interest π  
(they are multiplied by zero matrix). It can be proved that 

·
a

T

i
 tU 0  for i r  if the measurement vector 

a
t  does 

not contain noise. It is also worth mentioning for real 
identification problems (with the identification noise) the 
second group of equations produces constant residuals in the 
least-square objective (6) that cannot be minimized by 
varying the vector of unknown parameters π .  

Hence, for the identification of n  parameters comprising 
the vector π  we have obtained a system of r  linear 
equations that obviously cannot be solved uniquely. Its partial 
solution can be found as 

 0
1

1 · ·
r

T

i i a

i i


  π V U t  

This allows us to present general solution (9) as the sum of 
this partial solution  and arbitrary vector from the subspace 
with the basis 1 2, ,...

n
V V V   


1

ˆ
n

o i i

i r


 

   Vπ π  

where 
i
  are arbitrary real values.  

It is clear that all equalities in (15) should be satisfied for 
any displacements 

a
t  (that obviously have effect also on 

the matrices U , Σ  and V ). To analyze the model 
parameters identifiability, special interest represents 
assigning all displacements to zeros. This allows us to rewrite 
equation (15) as  

 · 0; 1,T

i
i r  V π  

that highlights the relative impacts of model parameters on 
the end-effector displacement and can be used to obtain 
coupling between the unknowns. So, in accordance with the 
properties of the second term of equation (17) (values of 
vectors 

i
V ) all model parameters π  can be partitioned into 

three groups G1, G2 and G3. Parameters of group G1 
(identifiable) uniquely defines by the equation (17) and do 
not depend on the arbitrary values 

i
 , for these parameters 

corresponding row of the sub-matrix 1[ ,..., ]
r mV V  is equal to 

zero. Parameters of group G2 (non-identifiable) do not effect 
on the 

j
t , for them corresponding column of the sub-matrix 

1[ ,..., ]
r

V V  is equal to zero. Parameters of group G3 (semi-
identifiable) effect on the 

j
t  but cannot be identified 

uniquely, couplings between the parameters of this group is 
defined by the vectors 

i
V , which have more than one non-

zero elements. Based on these decomposition algebraic-based 
model reduction techniques can be formalised in the 
following way: 

M4a:Partitioning. Divide the reduced set of the model 
parameters π  into three non-overlapping groups G1, G2 and 
G3 in accordance with the following rules applied to all 

i
  , 

1,dim( )i  π : 
Rule 1: Include parameter 

i
   into the group G1 if the ith 

row of the sub-matrix 1[ ,..., ]
r mV V  is equal to zero; 

Rule 2: Include parameter 
i

   into the group G2 if the ith 
column of the sub-matrix 1[ ,..., ]

r
V V  is equal to zero; 

Rule 3: If the parameter 
i

   is not included in G1 or G2, 
include it in the group G3. 

M4b:Elimination. Eliminate from the set of unknowns 
(model parameters) non-identifiable parameters that 
correspond to group G2.  

As a result of these techniques the set of model 
parameters π  will be reduced to the set 2\

G
π π  that does 

not reduce the rank of observation matrix 
2\( ) ( )

G
rank rank π ππ AA , but which still is redundant, i.e. 

2\ 2( ) dim( )\
G G

rank  π πA π π . It should be noted that 
   

1 1dim
G G

rank πA π  while    
3 3dim

G G
rank πA π . So, 

another and the most difficult problem that arises after M4, is 
to define among the set of parameters 3G

π  the one that will 
be treated as identifiable and which will be fixed. 
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The problem of selection identifiable parameters among 
the set of semi-identifiable has infinite number of solutions 
and usually is solved numerically, without attempts to solve 
in a general way. Here, let us presents an algorithm that is 
able to split parameters 3G

π  into the non-overlapping groups 
of coupled parameters in general way and then choose 
identifiable one from the group based on their physical scene  

M5a:Splitting. Split the set of semi-identifiable model 
parameters 3G

π  into the non-overlapping groups of coupled 
parameters 3

j

G
π  for which the following conditions are 

satisfied: 
(a) 1 2

3 3 3 3.... m

G G G G
π π π π , 3 3

i j

G G
i j  π π ; 

(b)     
3 3 3\i i i

G G G j
rank rankπ π πA A , 31: dim( )i

G
j  π  

(c)     
3 3 3 )i ji

G G G k
rank rankπ π π

A A , i j  , 
    31: dim( )j

G
k  π  
In practice, when grouping is not evident it is possible to 

use numerical technique, which is based on the SVD-
decomposition of the observation matrix  3, |

a a a G
A q w π  

  3· · , |T

a a a G
U Σ V A q w π  

where the matrix V  can be presented as [ , ]
r r V V V  in 

accordance with the rank of  3, |
a a a G

A q w π . Here, matrix 
rV  defines coupling between the elements. To highlight the 

groups of elements it is required to sparse it. One of the most 
efficient ways to do this is to multiply it on the inverse of   

   1* T

r r



 L V V  

where matrix *
rV  is full-rank square matrix composed of the 

column of the matrix T

rV . It should be noted that matrix *
rV  

is not unique, nevertheless, any of them allows getting matrix 
of couplings between the model parameters L  in a sparse 
form. The groups of elements can be easily detected after 
transformation of the matrix L  into the block-diagonal form. 
Here, the sub-set of parameters 3

j

G
π  corresponds to jth block 

of the matrix L . In each diagonal block the number of lines 
defines the number of parameters from the block that should 
be included in the complete model suitable for the 
identification.  

On the next step it is required to select parameters that 
will be identifiable in each set of parameters 3

j

G
π  and froze 

remainder:  
M5b:Selection. In each group of parameters 3

j

G
π  specify 

  3, | i

j a a a G
rankn  A q w π  parameters that will be treated 

as identifiable 
M5c:Assigning. In each group of parameters 3

j

G
π  fix 

    3 3, |dim j i

j G a a a G
ranm k π A q w π  parameters to 

some constants; these parameters will be treated as non-
identifiable   

It should be noted that the order of methods M5b and 
M5c is not strict, identifiable and non-identifiable parameters 
can be selected and fixed iteratively addressing to the 
methods M5b and M5c several times in the frame of one set 
of parameters 3

j

G
π . The sequence of steps and final set of 

parameters highly depend on the user, who can define 
priority for different parameters [11]. As the result of 
methods M5a, M5b and M5c the set of parameters  3G

π  will 
be split into two subsets: the subset of the parameters that 
will be treated as identifiable 3

id

G
π  and subset that will be 

treated as non identifiable ones 3
ni

G
π  and will be assigned to 

some constant values ( 3
ni

G
constπ ); i.e. 3 3 3

id ni

G G G
π π π , 

3 3
id ni

G G
π π . 

As the output of the algebraic approach, the complete set 
of parameters π  will be reduced to π  that includes all 
parameters from group G1 and identifiable one from the 
group G3, i.e. 1 3

id

G G
 π π π . Nevertheless, this model 

reduction will not violate completeness of the model i.e. 
   rank rank π πA A . 

VI. MODEL REDUCTION: STATISTICAL APPROACH(  π π ) 
As follows from relevant study, rigorous reduction 

methods based on the physical and mathematical properties 
of the compliance matrix are rather limited if the 
measurement noise is non- negligible. This gives us reasons 
to develop some heuristic rules that take into account the 
measurement noise impact on the identification accuracy. It is 
clear that extremely low accuracy is not acceptable, but often 
corresponding parameters are so small that their influence on 
the end-effector deflections is almost negligible. This 
supports an idea for heuristic reduction of small model 
parameters but leaving an open problem of their further 
reconstruction in the VJM-model using some empirical or 
semi-empirical relations induced by mathematical relations 
between the stiffness matrix elements. 

To take into account the relative accuracy of the 
parameter estimates, it is convenient to use a simple indicator 
showing parameter-to-noise ratio (10). It is evident that it 
should be applied only to those parameters that belong to the 
group G1. Using this index, a heuristic model reduction 
technique allowing us to distinguish the practically 
identifiable parameters from the hardly-identifiable ones can 
be formalised as follows:  

M6:Neglecting.  
Step 1: Using complete but non-redundant model, 

compute estimates of the desired parameters ˆ π  and their 
covariance matrix  ˆcov π  by means of (7) and (8); 

Step 2: Using the parameters estimates ˆ π  and the 
diagonal elements of the covariance matrix  ˆcov π , 
compute  the parameter-to-noise ratios 

i
  in accordance with 

expression (10); 
Step 3. For all compliance matrices k  to be identified, 

eliminate from the set of unknowns the parameters 
ij

k  for 
which parameter-to-noise ratios 

ij
  is lower the user defined 

threshold: 0ij
   .  

This method allows us to eliminate from the model the 
parameters whose identification accuracy is comparable with 
the noise and cannot be considered as reliable estimates.  

As follows from our experience, it a very powerful 
method with two useful features: (i) elimination of small (but 
theoretically non-zero) parameters, and (ii) detection of the 
elements corresponding to zeros in the matrix template (see 
method M2), if the latter has been defined rather carefully.  

VII. APPLICATION EXAMPLE 
The developed model reduction techniques have been 

applied to the generation sophisticated elastostatic model of 
the industrial robot KUKA KR-270 (Figure 1) that is suitable 
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for the identification in real industrial environment. The 
application area of this robot requires high precision while 
performing the technological process, which generates 
essential deflections of the end-effector. If the elastic 
properties are known, these deflections can be compensated 
on the control level via adjusting a target trajectory [4].  

Figure 1.  Experimental setup for the elastostatic calibration 

The considered manipulator contains 7 links separated by 
6 actuated joints. Taking into account that in general 
elastostatic properties of each link are defined by 6x6 
stiffness matrix, the complete but obviously redundant model 
contains 258 parameters. As a result of application model 
reduction techniques (M1-M5), the number of parameters to 
be identified has been reduced down to 32. More details on 
each step are given in Table I. It should be noted that the 
number of parameters in practically identifiable model 
depends on the step M5 and vary from 25 to 30. Using 
relevant model the compliance error compensation for the 
robotic based milling essential improvement of the precision 
has been achieved. The obtained elastic model allowed us to 
compensate more than 95% of deflections caused by external 
loading and to guarantee precision about 0.1 mm (that is 
comparable with the robot repeatability 0.06 mm). 

TABLE I. SEQUENTIAL  REDUCTION OF ELASTOSTATIC MODEL  
FOR 6 DOF INDUSTRIAL ROBOT KUKA KR-270 

Step Model description Number of 
parameters 

Original model 6 joints +7 links (36 par. for each) 258 
M1: Symmetrisation  6 joints +7 links (21 par. for each) 153 
M2: Sparcing  6 joints +7 links (8 par. for each)  62 
M3: Aggregation 7 links (8 par. for each)  56 
M4a:Partitioning 
M4b:Elimination 

G1: Identifiable parameters – 4 
G2: Non -identifiable par. - 4  
G3: Semi-identifiable par. – 48  

52 

M5a:Splitting 
M5b:Selection 
M5c:Assigning 

28 parameters in one group of 48 
semi-identifiable parameters  32 

M6: Neglecting  Results depend on step M5 25-30 

TABLE II. PRINCIPAL ELASTIC PARAMETERS OF ROBOT KUKA KR-270  

Parameter  Value  CI Parameter-to-
noise ratio 

k2, [rad×μm/N] 0.302  ±0.004 (1.3%)  231 

k3, [rad×μm/N] 0.406  ±0.008 (2.0%)  150 

k4, [rad×μm/N] 3.002  ±0.115 (3.8%)  79 

k5, [rad×μm/N] 3.303  ±0.162 (4.9%)  61 

k6, [rad×μm/N] 2.365  ±0.095 (4.0%)  75 

Additional analysis of the reduced model (that takes into 
account the actuators compliance only) has been done based 
on the proposed parameter-to-noise ratio. Relevant results 
have been presented in [12], for which parameter-to-noise 
ratios have been computed (Table II). As follows from them, 
in such a model all parameters are practically identifiable, 
however it is not able to describe all deflections (especially in 
x and y directions) because of the model limitations. Hence, 
the complete model presented in this paper has obvious 
advantages over the reduced model studied before. 

VIII. CONCLUSION

The paper deals with the problem of elastostatic 
calibration of serial industrial robots, which is extremely 
important for robotic-based machining when high position 
accuracy is required. Particular attention is paid to the model 
parameters identification using end-point measurements 
only. The main contributions are in developing algebraic, 
that allow user to obtain complete model with minimal 
number of parameters, which is suitable for elastostatic 
calibration.  The advantages of the developed approach have 
been illustrated by an application example that deals with the 
elastostatic parameters identification of industrial robot. 
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