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Abstract— The paper is devoted to geometric and 

elastostatic calibration of industrial robot for milling 

application. Particular attention is paid to the analysis of 

the experimental results and enhancement identification 

routines. In contrast to other works, the identification 

results have been validated using separate set of 

measurements that were not used in calibration. The 

obtained geometric and elastostatic models essentially 

improve robot positioning accuracy in milling 

applications.  

I. INTRODUCTION 

In machining of large dimensional parts, application of 

industrial robots looks very attractive since they provide 

large workspace comparing to conventional CNC-machines. 

But because of some particularities of robot kinematics, the 

end-effector positioning errors are accumulated from link to 

link and affect on the machining accuracy. Besides, in this 

application, the elastic deflections of the robot transmissions 

and mechanical components become significant and 

comparable with the geometric errors. For this reason, to 

achieve desired accuracy of the machining process, robot 

control must rely on the accurate manipulator model that is 

able to compensate both the geometric errors and the elastic 

deformations under loadings caused by the machining 

force/torque. 

However in practice, most of the manipulator model 

parameters are unknown, only nominal values of the 

principal geometric parameters can be extracted from the 

manufacturer datasheet. On the other hand, the manipulator 

elastic parameters can be obtained from the calibration 

experiments only. So, the identification accuracy for both 

geometric and elastic parameters becomes critically 

important.  

In the literature, the problem of manipulator model 

calibration has been in the focus of the research community 
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for several decades. Most of the efforts have been made for 

manipulator geometric calibration, which has been studied 

from different aspects (modeling and measurement methods, 

identification algorithms, etc) [1-6]. Currently, more and 

more attention is paid to the elastostatic calibration, but the 

majority of the related works focus on the development of 

simplified stiffness models and the use of conventional 

identification techniques [7-8].  

Another important issue in this area is related to the 

identification accuracy improvement and reduction of the 

measurement noise impact. At present, it has not found 

enough attention in the literature; only limited number of 

works directly addressed this problem [9, 10]. An attractive 

way to improve the identification accuracy without 

increasing the number of calibration experiments is 

preliminary optimization of the measurement configurations. 

This approach has been considered in several works [11-13], 

where the authors adapted the idea of optimal plan of 

experiments (which was originally developed for linear 

regression models) to robot calibration. In contrast, in this 

work measurement configurations have been obtained using 

new industry oriented performance measure [14], which aims 

at minimizing robot positioning accuracy after 

compensation. For this reason, the paper deals with 

experimental study on the geometric and elastostatic 

calibration of industrial robot for milling application. It 

presents calibration methodology and relevant experimental 

results, with their detailed analysis.  

II. EXPERIMENTAL SETUP

The manufacturing cell where the examined robot KUKA 

KR-270 has been installed is presented in Figures 1 and 2. 

To identify the desired geometric parameters, the 

manufacturing cell is equipped with some additional 

measuring devices that provide us with Cartesian coordinates 

of the references points for each manipulator configuration. 

So, entire experimental setup includes the following units: 

 KUKA KR-270 manipulator (repeatability 60 µm);

 Robot control system KR-C2;

 Special measurement tool with 3 reference points;

 Laser tracker Leica AT-901 (precision of 10 µm);

 Laser tracker reflector (with precision about 1 µm);

 Personal computer, which is used for data logging.

The experimental setup for manipulator geometric 

calibration is shown in Figure 1.  

Experimental study on geometric and elastostatic calibration of 

industrial robot for milling application 

Yier Wu, Alexandr Klimchik, Stéphane Caro, Christelle Boutolleau, Benoit Furet, Anatol Pashkevich

1



Figure 1.  Experimental setup for manipulator geometric calibration 

To reduce the influence of the non-geometric factors, the 

measurements were repeated several times for each 

configuration, with additional movements of the manipulator 

end-effector from a current location to its neighborhood and 

back. As a result of this procedure, the measurement data of 

each manipulator configuration contain 27 position 

coordinates ( , ,
x y z

p p p for three reference points). The 

whole data set obtained in experiments contains 432 

coordinates , ,
x y z

p p p  corresponding to 18 manipulator 

configurations. 

In addition to the experimental devices used in geometric 

calibration, some extra tools for relevant force application 

and measurements are used in elastostatic calibration. 

Corresponding experimental setup is presented in Figure 2. 

According to the algorithms for the manipulator elastostatic 

calibration presented in Section III, the experimental 

procedure is divided into three stages: (i) calibration of the 

gravity compensator geometry; (ii) calibration of the 

manipulator elastostatic parameters 
2 6
, ...,k k ; and (iii) 

calibration of the manipulator elastostatic parameter 
1

k . 

Figure 2.  Experimental setup for manipulator elastostatic calibration 

III. MATHEMATICAL BACKGROUND

A. Identification of geometric parameters 

Let us assume that the measurement tool has n  reference 

points ( 3n  ) that are used to estimate relevant vectors of 

the Cartesian coordinates ( , , )
j j j j

i xi yi

T

zi
p p pp  for m

manipulator configurations 
i

q . In this notation, the subscript 

" i " and subscript " j " denote the experiment number and 

the reference point number, respectively. Correspondingly, 

the manipulator geometric model can be written as  

· ( , ) ;  1, ,  1,
j

base r

j

i obot i tool
i m j n  T T T q π  (1) 

where the vectors j

i
p  are incorporated in the fourth column 

of j

i
T , the matrix 

base
T  defines the robot base location, the 

matrices , 1,
t l

j

oo
j nT  describe the locations of the reference 

points. Here, the matrix function ( , )
robot i

q π  describes the 

manipulator geometry and depends on the actuated 

coordinates 
i

q  and the parameters π  to be estimated. 

Taking into account that matrix b

a
T  can be split into the 

rotational b

a
R  and translational b

a
p  components the model 

(1) can be expressed in the following form 

( , ) ( , )
j

i base base robot i base robot i tool
     p p R p q π R R q π p (2) 

This allows us to obtain 3m n  scalar equations for the 

calibration purposes, where 3n   and m  is high enough to 

ensure identifiability of the desired parameters. 

The main difficulty of relevant optimization problem is 

that some of the unknowns are included in the objective 

function in highly non-linear way. So, to solve this problem, 

numerical optimization technique is required. To simplify 

computations, it is proposed to apply the linearization of 

geometrical model sequentially and separately with respect 

to two different subsets of the model parameters 

(corresponding to the base/tool transformations and the 

manipulator geometry). Consequently, the identification 

procedure is split into two steps 

Step 1. Assuming that the errors in the base orientation 

are relatively small, the matrix 
base

R  can be presented as 

 ~
base base

φ I , where I  is a 3 3  identity matrix, 

vector 
base

φ  includes the deviations in the base orientation 

angles, and the operator " [~ ] " transforms it into the skew 

symmetric matrix. Denoting 
bas

j

to eol tool
u R p , equation (2) 

after several transformations can be rewritten as 

~
j i i i

i

j

too

base
T

robot robot robot base

l





  





p

p p I p R φ

u

(3) 

Applying to the linear system (3) the least-square 

technique, the desired vectors defining the base and tool 

transformation parameters can be expressed as follows 

1

1

1
; ; ; ...

T
m

j j j

base base i i i i

i

n

too

i

l tool





   
    

   
φ A A pp Au (4) 

where 1
...( , ),

n T

i i i
   p p p  and 
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~ ...

~ ...

... ... ... ... ... ...

~ ...

T

robot robot

T

j robot robo

i i

i

i

t
i

T

robot r

i

obot

  
  

 

I p R 0

0I p R

I p R

A

0

(5) 

In this case, the variables defining the location to the 

reference points are computed as ·
j T j

tool base tool
p R u . 

Step 2. On the second step, the manipulator geometric 

parameters π  are estimated. For this purpose, the principal 

system is linearized and rewritten in the form 

(
·

j j p

i p J π (6) 

where j

i i ob t

i

r o
   pp p , the superscript " ( )p " denotes the 

positional components, the matrix j

iJ  is the identification 

Jacobian with respect to the reference point j . Applying to 

this system the least-square technique, the desired vectors of 

geometric errors π  can be obtained as 

1

( ) ( ) ( )

1 1 1 1

m n m n

j p T j p j p T j

i i i i

i j i j

  



   

   
   

   
   π J J J p  (7) 

It should be noted that, to achieve the desired accuracy, the 

steps 1 and 2 should be repeated iteratively. 

B. Identification of elastostatic parameters 

In the frame of enhanced partial pose measurement 

method [15, 16], each calibration experiment produces a set 

of vectors { , , 1, }
j

i i i
j n wp q . So, the calibration 

procedure is treated as the best fitting of the experimental 

data  , 1, , 1, ,,
j

i i i
i m j n  wq  by the stiffness model that 

can be solved using the standard least-square technique. 

Corresponding system of equations for elastostatic 

identification that aggregates the desired joint compliances in 

the vector k  can be presented as  

(
( , )   1, , 1,

j j p

i k i i
i m j n    p A q w k (8) 

where j

i
p is the end-effector deflection for the -thi

configuration that is computed for -thj  reference point 

θ ,, θ ,

j T

c

j j

k c c
A J J w . 

Applying the least-square technique to the system (8), the 

estimates of the desired vector of compliances parameters 

can be computed as  

1

( ) ( ) ( )

1 1 1 1

·

m

j

n

p T j p j p T j

ki ki ki i

i i i j



   




 
   k A A A p (9) 

These values can be used to compensate compliance errors 

caused by external wrench applied to the robot end-effector. 

C. Mechanics of gravity compensator 

The mechanical structure of the gravity compensator 

under study is presented in Figure 3. The compensator 

incorporates a passive spring attached to the first and second 

links, which creates a closed loop that generates the torque 

applied to the second joint of the manipulator. This design 

allows us to limit the stiffness model modification by 

incorporating in it the compensator torque 
c

M  and adjusting 

the virtual joint stiffness matrix 
θ

K  that here depends on the 

second joint variable 
2

q  only. 

xa

ya

2q




s L

Link 2

2P

1P

Link 1

a

ck
2qk

sF
cF

lF

O

ya



L

0P

2P

a

02P

01P 1R

2R 

-  measurement points

, ,x yL a a -  geometric parameters

03P

04P

3R

4R

Figure 3.  Gravity compensator model 

Using the above mentioned property, the equivalent 

stiffness of the second joint can be expressed as: 

2 2 2

0

c
K K K a L   (10) 

where the coefficient 
2q

  is expressed as follows 

2

20

2 2 22
sin co( ) ( ) ( )s cos

q

s a L
q q q

s s
   


   


 (11) 

and depends on the joint variable 
2

q and the initial 

preloading 
0

s . The definitions of all remaining geometrical 

parameters is clear from the figure. 

Hence, using (10), it is possible to extend the classical 

VJM-based stiffness model of the serial manipulator by 

modifying the virtual spring parameters in accordance with 

the compensator properties. It should be mentioned that the 

geometrical and elastostatic models of a heavy manipulator 

with a gravity compensator should include some additional 

parameters ( , a , L  and 
c

K , 
0

s  for the presented case) 

that are usually not included in datasheets. For this reason, 

the following subsections focus on the identification 

methodology for the extended set of manipulator parameters. 

D. Identification of gravity compensator geometry 

In contrast to strictly serial manipulator that can be 

treated as a principal mechanism of the considered robots, 

the geometric parameters concerning gravity compensators 

are usually not included in the technical documentation 

provided by the robot manufacturers.  

According to the proposed stiffness modeling approach, 

geometrical parameters , ,
x

L a a  affect the equivalent 

stiffness of the second joint. These geometrical parameters 

should be identified from the dedicated experimental study. 

Taking into account particularities of the experimental setup 

presented in Figure 3, where for each given joint coordinate 

2
q  the point P1 is measured, the value of L  can be 

computed as 

1

m T T

i i ii i

m

i
L


  p R u u u  (6)

where 1

1

m

i i i
m




  p p p  and  1

1

m

i i i
m




  u u u  are

centered vectors of the Cartesian coordinates measurements 
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i
p  and [cos , sin , 0]

T

i i i
q qu , m  is the number of 

measurements. Here, the orthogonal matrix TR V U  can 

be obtained using SVD-factorization 
1

m

ii

T

i
 u p U Σ V .

The remaining geometrical parameters (
x

a  and 
y

a ) are x and 

y coordinates of the vector 

1 1 1

1

1 1 1

0
(

2

k m k m k m

j j j j j

i i i i i

j i j i

T

T

i

j

s
km     


      

I n n n n
p p p p p (7) 

where 1

1

mj j j

i i ll
m




  p p p , 1

1

mj j j j j

i i i i il

T
s




  p p p p ,

j

i
p  is the Cartesian coordinate vector of point P0j for the ith 

measurement, k  is the number of reference points and m  is 

the number of measurements. Here, the vector n  is the last 

column of the matrix V  of the following SVD-factorization 

1

k j

ij

T


  p p U Σ V . 

E. Identification of gravity compensator elasticity 

Using the idea of equivalent virtual spring with non-

linear stiffness, it is convenient to consider several 

independent parameters 
2 i

k  corresponding to each value of 

2
q . This allows us to obtain linear form of the identification 

equations that can be easily solved using the standard least-

square technique. 

Let us denote the set of desired parameters 

1 21 22 3 6
, ( , ...), , ...,k k k k k  as the vector k , which allows us to 

present the relevant force-deflection relations in the form 
( )p

i
 p B k , where matrices ( )p

i
B are composed of the 

elements of the observation matrix 
ki

A  that is usually used 

in stiffness analysis of serial manipulators. 

Using these notations, the extended set of elastic 

parameters that includes all equivalent virtual springs for the 

second joint can be computed by using the standard least-

square technique that leads to  

1

( ) ( ) ( )

1

·
T

m

p p p

i i i i

i





   
   

   
k B B B p (12) 

The second step deals with the identification of the gravity 

compensator parameters and compliance of joint #2  

   
2

1

0

0

1
·

q q

i

T

c c i

m mT

ii i
K K K Ks  



   C C C (13) 

where 
q

m  is the number of different angles 
2

q , 

 2
1 · / · / ·cos sin cos

i i i i
L L a sa La s    C (14) 

here 
2i i

q   . Thus, the proposed modification of the 

previously developed calibration technique allows us to find 

the manipulator and compensator parameters simultaneously.  

IV. CALIBRATION RESULTS

A. Identification manipulator geometry 

Using measurement data, the two-step identification 

procedure has been applied. On the first step, the base and 

tool transformations have been computed, corresponding 

results are presented in Tables I and II. On the second step, 

these transformations have been used for the identification of 

the manipulator geometric parameters, which are presented 

in Table III. It should be mentioned that in order to increase 

the identification accuracy, this two-step procedure has been 

repeated iteratively (280 iterations, computing time <2 min.). 

TABLE I. IDENTIFICATION RESULTS FOR BASE TRANSFORMATIONS  

Value, [mm] CI Value, [deg] CI 

Laser tracker placement #1 

x
p -0.023 ±0.045 x

 -0.004 ±0.001 

y
p 0.010 ±0.032 y

 0.001 ±0.002 

z
p 0.057 ±0.044 z

 -0.017 ±0.001 

Laser tracker placement #2 

x
p -0.099 ±0.122 x

 -0.009 ±0.004 

y
p -0.098 ±0.053 y

 0.006 ±0.004 

z
p -0.076 ±0.121 z

 -0.013 ±0.003 

TABLE II. IDENTIFICATION RESUTS FOR TOOL TRANSFORMATIONS 

RP #1 (P1) RP #2 (P2) RP #3 (P3) 

Value CI  Value CI Value CI 

px, mm 277.23 ±0.05 276.49 ±0.05 278.44 ±0.05 

py, mm -46.53 ±0.04 -48.25 ±0.04 103.73 ±0.05 

pz, mm -93.87 ±0.04 94.05 ±0.05 -2.17 ±0.05 

TABLE III. IDENTIFICATION RESULTS FOR GEOMETRIC PARAMETERS  

Parameter 

Unit 
1x

p

[mm] 

1y
p

[mm] 

1x


[deg] 

2
q

[deg] 

2x
p

[mm] 

2x


[deg] 

Value -0.353 0.426 0.015 -0.007 0.458 0.022 

CI ±0.086 ±0.272 ±0.005 ±0.005 ±0.082 ±0.014 

Parameter 

Unit 
2z



[deg] 

3
q

[deg] 

3x
p

[mm] 

3z
p

[mm] 

3z


[deg] 

4
q

[deg] 

Value -0.023 -0.023 -0.214 -0.508 -0.011 0.001 

CI ±0.005 ±0.019 ±0.089 ±0.363 ±0.017 ±0.008 

Parameter 

Unit 
4y

p

[mm] 

4z
p

[mm] 

4z


[deg] 

5
q

[deg] 

5z
p

[mm] 

5z


[deg] 

Value -0.167 -0.018 0.025 -0.011 0.016 -0.008 

CI ±0.113 ±0.073 ±0.015 ±0.027 ±0.104 ±0.018 

For the comparison purposes, the manipulator accuracy 

improvement has been studied based on the residual analysis 

before and after calibration. Corresponding results are 

presented in Table IV, which includes the maximum and root 

mean square (RMS) values of the relevant residuals. As 

follows from the results, both types of the residuals have 

been essentially reduced after calibration. In particular, the 

maximum values have been reduced by a factor of 4 and 3.5, 

while the RMS values of these two criteria have been 

decreased by a factor of 5.3 and 5.5, respectively. 

TABLE IV. MANIPULATOR ACCURACY IMPROVEMENT AFTER 

GEOMETRIC CALIBRATION BASED ON RESIDUAL ANALYSIS 

Type of 

residuals 

Before 

calibration 

After 

calibration 

Improvement 

factor 

Coordinate 

based, [mm]  

max 1.25 0.32 4.0 

RMS 0.54 0.10 5.3 

Distance 

based, [mm] 

max 1.31 0.39 3.5 

RMS 0.94 0.17 5.5 

In order to evaluate the calibration results, the residuals 

from the identification equations have been computed for 

each coordinate separately, corresponding histograms are 

shown in Figure 4. As follows from detailed analysis, the 

residuals tend to follow the normal distributions with zero 

mean and parameter   equal to 0.10 mm, 0.09 mm, and 

0.11 mm for X-, Y-, and Z- direction, respectively. The latter 
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allows us to conclude that the measurement noise parameter 

  in experiments is equal to 0.1 mm. This value is higher 

than the precision of the laser tracker (0.01 mm), the 

difference can be caused by limitations of the geometric 

model, which does not take into account the elastostatic 

deformations due to gravity, the friction/backlash in joints 

and other factors that influence on the robot repeatability 

(±0.06 mm). Nevertheless, geometric calibration ensures 

essential improvement of the robot accuracy. 

Figure 4.  Histograms of residual distribution along X-, Y-, and Z-

directions after geometric calibration 

B. Identification compensator geometry 

The principal geometric parameters of the gravity 

compensator are L , xa  and ya  (see Figure 3). They can be 

identified using relative locations of points P0 and P1 with 

respect to P2. Corresponding measurement data for the set of 

angles  2 0 , 30 , 60 , 90 , 120 , 140q              have been 

processed using two identification algorithms. The first 

algorithm is aimed at matching the set of points  1

i
p  with 

additional set of angles  2

i
q , that allows us to identify the 

desired circle radius L . The second algorithm uses sets of 

point positions    01 04, ...,
i i

p p to determine the relative 

location of point P0 with respect to P2. The identified 

parameters and confidence intervals are given in Table V.  

TABLE V. IDENTIFICATION RESULTS FOR THE COMPENSATOR 

GEOMETRIC PARAMETERS 

L , [mm] x
a , [mm] y

a , [mm] 

Value 184.72 685.93 123.30 

CI   0.06  0.70  0.69 

C. Identification of elastostatic parameters 

Using the identification results for the gravity 

compensator geometry, it is possible to evaluate the variation 

of the equivalent stiffness of the second joint caused by the 

gravity compensator impact. As follows from dedicated 

analysis, the compensator impact is highly non-linear, differs 

throughout the robot workspace and highly depends on the 

spring preloading 0s . Nevertheless, it is possible to treat the 

value of 2k  as a constant in the neighborhood of each 2q . 

This allows us to use the linear system of identification 

equations. In accordance with the geometric parameters of 

the gravity compensator and the manipulator joint limits, five 

values of joint 2q  have been selected (-0.01˚, -25.2˚, -56.9˚, 

-99.8˚, -140˚). So, the desired vector of the elastostatic 

parameters k  includes four constant compliance parameters 

3 4 5 6
, ,{ },k k kk  and a 5 1  vector 

21 25
, ...,{ }kk  that describes 

the configuration-dependent compliance parameters for 

different values of joint angle 2q . 

In usual engineering practice, it is assumed that all 

measurements are corrupted by the same measurement noise. 

However, for the laser tracker used in our experiments, the 

precision highly depends on the measurement direction and 

varies throughout the robot workspace. In this case, the 

covariance matrix can be still assumed to be diagonal, but 

with non-equal diagonal terms. For comparison purposes, the 

identification has been performed using both Ordinary Least-

Square (OLS) and Weighted Least Square (WLS) 

techniques. Corresponding values of the elastostatic 

parameters are presented in Table VI. The results show that 

the confidence intervals for OLS and WLS have 

intersections for all parameters of interest. Moreover, the 

confidence intervals for WLS are always inside confidence 

intervals for OLS and are considerably smaller. Using the 

obtained values of 
21 25

, ...,{ }kk , it has been identified an 

equivalent parameter 
2

k , which is used in stiffness modeling 

of the manipulator with the gravity compensator. The 

identified compensator elastostatic parameters are presented 

in Table VII, which also includes the compensator 

compliance and preloading. 

The obtained manipulator elastostatic parameters can be 

used to improve the robot accuracy by compensation of the 

robot deformations under the external loading. For 

comparison purposes, the accuracy improvement has been 

studied based on the residual analysis. Similar to the 

geometric case, two types of residuals have been examined, 

the coordinate- and distance-based ones. Corresponding 

results are presented in Table VIII. As follows from them, 

maximum and RMS residuals have been essentially reduced 

after calibration by a factor of 6.0 and 6.5 respectively. 

TABLE VI. COMPARISON OF THE ORDINARY AND WEIGHTED LEAST 

SQUARE TECHNIQUES ([RAD µM/N]) 

ki OLS WLS 
Mutual 

location of CI 
CIOLS CIWLS 

O L S

W L S





k21 0.297 0.287 3.4% 0.09% 40.5 

k22 0.287 0.277 4.2% 0.13% 33.2 

k23 0.315 0.302 5.9% 0.18% 33.9 

k24 0.302 0.293 10.7% 0.33% 33.1 

k25 0.251 0.246 7.8% 0.27% 30.1 

k3 0.396 0.416 7.8% 0.26% 28.8 

k4 3.017 2.786 8.2% 0.25% 35.1 

k5 3.294 3.483 15.3% 0.34% 42.0 

k6 2.248 2.074 32.2% 1.28% 27.2 

TABLE VII. IDENTIFICATION RESULTS FOR THE COMPENSATOR 

ELASTOSTATIC PARAMETERS 

Elastostatic 

parameters 
Unit Value 

Confidence 

interval 

kc [rad µm/N] 0.144 ±0.031 

s0 [mm] 458 ±27 

k2
0 [rad µm/N] 0.302 ±0.004 

TABLE VIII. MANIPULATOR ACCURACY IMPROVEMENT AFTER 

ELASTOSTATIC CALIBRATION BASED ON RESIDUAL ANALYSIS 

Type of 

residuals 

Before 

calibration 

After 

calibration 

Improvement 

factor 

Coordinate 

based, [mm] 

max 9.17 1.53 6.0 

RMS 2.99 0.46 6.5 

Distance 

based, [mm] 

max 9.26 1.54 6.0 

RMS 5.18 0.80 6.5 
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Figure 5.  Distributions of the manipulator end-effector deflections along 

Z directions: ♦ - experimental data;  - computated 

To evaluate the calibration results, let us analyze the 

residuals computed from the identification equations for each 

coordinate separately. It is worth mentioning that the 

residuals after calibration along Z-direction are in a good 

agreement with those obtained in the geometric case. In 

contrast, in X and Y-direction the error deviations are higher 

because of the model limitation, which is not able to describe 

the deflections in these two directions without taking into 

account the elastostatic property of joint #1. Nevertheless, 

the elastostatic calibration ensures essential improvement of 

the robot accuracy. As follows from the results, the 

positioning errors evaluated using the model are in a good 

agreement with the ones obtained via residual analysis based 

on experimental data (Figure 5). In fact, the developed 

calibration technique is able to compensate in average 95% 

of the deflections in Z-direction. Hence, the obtained 

elastostatic model is able to provide quite reasonable 

estimates of the end-effector positioning errors for all 

manipulator configurations under the loading. 

V. EXPERIMENTAL VALIDATION 

A. Validation methodology 

To justify the obtained results, it is reasonable to evaluate 

them for additional configurations that were not employed in 

the calibration. In the frame of this idea, experimental data 

have been divided into two non-overlapping subsets:  

 Calibration subset, which has been used for

identification of the model parameters;

 Validation subset, which has been used for

evaluation of the model accuracy after calibration.

Figure 6.  Validation scheme for the calibration results 

Then, for each measurement from the validation subset, the 

difference between the measured end-effector position and 

the computed position (using the calibrated model) has been 

evaluated (Figure 6). 

To demonstrate the advantages of the optimal pose 

selection technique (that has been used to generate 

measurement configurations both for geometric and 

elastostatic cases), the manipulator accuracy after calibration 

has been compared for two distinct plans of the calibration 

experiments. The first one has been obtained using the 

industry-oriented performance measure and numerical 

algorithms proposed in this work. In this case, the 

manipulator was presented as a quasi-serial chain (in order to 

take into account the gravity compensator impact), and the 

calibration data were obtained using the enhanced partial 

pose measurements. The second plan used measurement 

configurations that were selected semi-intuitively, in 

accordance with some kinematic performance measures [17]. 

Relevant manipulator model corresponds to the strict serial 

architecture, and the calibration data were obtained using 

conventional full-pose measurements.  

Using these two sets of calibration data, the identification 

yielded two slightly different sets of manipulator parameters 

(Table IX). Then, the obtained parameters (both sets) may be 

used to compute the end-effector positions for the validation 

configurations. Comparing these results with the 

corresponding position measurements, it is possible to 

evaluate the "calibration quality" and relevant plans of the 

experiments (Figure 7).  

Figure 7.  Validation scheme for the developed optimal pose selection 

technique 

TABLE IX. MANIPULATOR ELASTOSTATIC PARAMETERS OBTAINED 

USING KNOWN AND DEVELOPED APPROACHES, µRAD/NM 

k1 k2 k3 k4 k5 k6 

[This  

work] 
0.623 

-145°

0.297

0.278
-95° -45° 0°

0.416 2.786 3.483 2.074 

Previous 

work] 
3.798 0.248 0.276 1.975 2.286 3.457 
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B. Validation of the results for geometric calibration 

In order to validate the identification results for 

geometric parameters, the manipulator positioning accuracy 

after error compensation has been analyzed for each 

validation configuration separately. The geometric error 

distributions for these configurations are presented in 

Figure 8, corresponding histograms of errors in x, y and z 

direction are shown in Figure 9. As follows from detailed 

analysis, the errors have zero mean values and almost the 

same standard deviation  , which is equal to 0.17 mm, 

0.22 mm and 0.20 mm along X, Y, and Z directions, 

respectively. It should be noted that here the results tend to 

follow a normal distribution, however non-perfectly due to 

the insufficient statistical data (60 coordinates in each 

direction). 

Figure 8.  Geometric error distribution for validation configurations 

Figure 9.  Histograms of error distribution along X, Y, and Z directions 

after geometric calibration (for validation configurations) 

It is worth mentioning that the parameter   estimated 

from the error analysis of the validation data is higher than 

the one computed on the identification step. This difference 

is caused by the limitation of the manipulator model used for 

calibration that does not take into account elastostatic 

properties. More detailed information is presented in 

Table X, which contains the positioning errors for each 

configuration and each end-effector reference point. It also 

provides the average positioning errors computed from the 

experimental data and using the covariance matrix. The 

results show that the model-based predicted errors are higher 

compared to the previous case (evaluated for calibration 

configurations) but they are in a good agreement with the 

ones obtained from experiments. 

For comparison purposes, the manipulator accuracy 

improvement due to geometric errors compensation has been 

also studied based on the residual analysis before and after 

compensation. Relevant results are presented in Table XI, 

where the maximum and RMS values are provided. As 

follows from the obtained results, the geometric error 

compensation can ensure essential improvement of the robot 

accuracy. Here, the maximum errors have been reduced by a 

factor of 2.3 and 1.9 for these two criteria respectively, while 

the RMS errors have been decreased by a factor of 2.6.  

TABLE X. POSITIONING ERRORS AFTER GEOMETRIC COMPENSATION 

FOR EACH VALIDATION CONFIGURATION (WITHOUT LOADING, MM) 

Valid. 

config. 

Coordinate-based residuals 
Average 

positioning error 

X Y Z Experiments Model  

Conf.1 
-0.04... 

0.10 

-0.13... 

0.12 

-0.23... 

0.12 
0.09 0.11 

Conf.2 
-0.46... 

-0.18 

-0.15... 

0.03 

-0.33... 

0.02 
0.21 0.23 

Conf.3 
-0.04... 

0.26 

-0.26... 

0.12 

-0.47... 

-0.02 
0.20 0.18 

Conf.4 
-0.07... 

0.18 

-0.33... 

-0.02 

-0.03... 

0.22 
0.16 0.18 

Conf.5 
0.04... 

0.17 

0.27... 

0.49 

0.13... 

0.42 
0.28 0.12 

TABLE XI. THE MANIPULATOR ACCURACY IMPROVEMENT AFTER 

GEOMETRIC ERROR COMPENSATION 

Type of 

residuals 

Before 

calibration 

After 

calibration 

Improveme

nt factor 

Coordinate 

based, [mm] 

max 1.11 0.49 2.3 

RMS 0.52 0.20 2.6 

Distance 

based, [mm] 

max 1.28 0.66 1.9 

RMS 0.90 0.34 2.6 

C. Validation of the results for elastostatic calibration 

In order to evaluate the identification results for the 

elastostatic parameters, the manipulator positioning accuracy 

under loading has been analyzed separately for each 

validation configuration. For these configurations, the 

histograms of the elastostatic error distributions after 

compensation are presented in Figure 10. As follows from 

their analysis, the RMS values of these errors are equal to 

0.21 mm, 0.44 mm and 0.21 mm along X, Y, and Z 

directions, respectively. It should be noted that here the 

results of positioning errors tend to follow the Maxwell-

Boltzmann distribution with the overall standard deviation of 

0.14 mm, however due to the insufficient statistical data, 

their shapes are slightly different from the theoretical one. 

Figure 10.  Histograms of error distribution along X-, Y-, and Z-directions 

after elastostatic calibration (for validation configurations, data subset #2) 

It is worth mentioning that the manipulator positioning 

accuracy after elastostatic errors compensation along X- and 

Z-directions (with the RMS value equal to 0.21 mm) justifies 

the effectiveness of the proposed calibration technique 

(provided accurate manipulator parameter estimations). 
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While the accuracy along Y-direction is not perfectly 

improved because of the model limitation, which is not able 

to describe these deflections completely. Nevertheless, as it 

will be shown below, the elastostatic calibration ensures 

essential improvement of the robot accuracy. In more details, 

the positioning errors concerning each configuration and 

each reference point are provided in Table XII. Similar to 

the geometric case, the average positioning errors are 

computed from the experimental data and using the 

covariance matrix, corresponding results indicate good 

agreement between these two approaches. 

For comparison purposes, the manipulator accuracy 

improvement due to elastostatic errors compensation has 

been studied based on the error analysis before and after 

compensation. Relevant results are presented in Table XIII. 

As follows from the obtained results, using the identified 

elastostatic parameters, it is possible to compensate 

essentially the deflections along Z-direction (96.4% in 

average). In general, the manipulator positioning accuracy 

has been improved by a factor of 11.1 compared to a non-

compensated robot. 

TABLE XII.  POSITIONING ERRORS AFTER ELASTOSTATIC CALIBRATION 

FOR EACH VALIDATION CONFIGURATION (SUBSET #2, UNDER LOADING, MM) 

Valid. 

config. 

Coordinate-based residuals 
Average 

positioning error 

X Y Z Experiments  Model  

Conf.1 
-0.46… 

-0.24 

-0.49... 

-0.37 

-0.15... 

0.09 
0.31 0.54 

Conf.2 
0.07... 

0.39 

-0.52... 

-0.30 

-0.24... 

-0.09 
0.32 0.52 

Conf.3 
-0.03... 

0.21 

-0.63... 

-0.40 

-0.43... 

-0.23 
0.36 0.26 

Conf.4 
0.03... 

0.21 

-0.42... 

-0.34 

-0.29... 

-0.17 
0.26 0.27 

Conf.5 
0.05... 

0.22 

-0.44... 

-0.34 

-0.19... 

0.03 
0.25 0.22 

TABLE XIII. THE MANIPULATOR ACCURACY IMPROVEMENT AFTER 

ELASTOSTATIC ERROR COMPENSATION 

Crite-

rion 

Coordinate-based residual, [mm] 

Before 

compen-

sation 

After compensation Improvement factor 

[Previous 

work]* 

[This 

work]** 

[Previous 

work]* 

[This 

work]** 

X 
max 0.79 0.51 0.46 1.5 1.7 

RMS 0.51 0.23 0.21 2.1 2.4 

Y 
max 1.35 0.68 0.63 1.9 2.2 

RMS 0.81 0.44 0.44 1.8 1.8 

Z 
max 8.06 1.63 0.43 4.9 18.7 

RMS 5.82 1.17 0.21 5.0 28.0 

Distance-based residual, [mm] 

max 8.28 1.77 0.78 4.6 10.4 

RMS 5.90 1.27 0.53 4.6 11.1 

*Stiffness model does not take into account the gravity compensator impact

**Stiffness model takes into account the gravity compensator impact 

VI. CONCLUSION

The paper is devoted to the experimental study. Particular 

attention has been paid to the positioning accuracy 

improvement of KUKA KR-270 industrial robot that 

includes the gravity compensator. For this robot positioning 

accuracy has been improved by the factors 6 and 10 for the 

unloaded and loaded manipulator respectively. The paper 

summarises experimental study on accuracy improvement in 

robotic-based manufacturing conducted in the frame of 

national research program associating academic and 

industrial partners. 
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