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Abstract: 

This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) 

coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) 

from synthetic contaminated water. The materials developed were fully characterised and 

were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides 

coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% 

metal coating was the optimal configuration for the coated OMS materials in removing 

arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms 

was studied, modelled and discussed. It was shown that the advantage of an organised 

material over an un-structured sorbent was very limited in terms of kinetic and diffusion 

under the experimental conditions. It was shown that physisorption was the main adsorption 

process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg 

As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1

was removed at pH 4 for equivalent material coated with Fe oxides. 
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Highlights: 

� 3D and 2D Organised Mesoporous Silica were efficiently coated with different Al to 

Fe oxides ratio 

� 8 % metal oxide loading was estimated to be the most appropriate content  for 

efficient As removal 

� Successful tailoring of adsorbent toward specific As(III) to As(V) ratio by varying Al 

to Fe oxide content was confirmed 

� Tailoring of the adsorbents produced is highly dependent on the pH of the water 

treated as well as the level of contaminant concentration  

� No superior diffusion of pollutants into organised materials over unorganised 

materials was demonstrated 

Keywords: Organised Mesoporous Silica, iron oxide, aluminium oxide, arsenic removal, 

diffusion   
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1 Introduction 

Arsenic contamination is a problem affecting all countries throughout the world. However the 

countries in south and south-east Asia are considered the most vulnerable places facing this 

crisis which might impact many lives in the coming years [1]. The drinking water guideline 

from the World Health Organisation for arsenic levels was lowered to 10 ppb in 1993 [2]. 

Since then, many governments have modified their legislation to adopt this guideline value as 

a national standard. Nevertheless, a few countries, which are facing severe arsenic 

contamination are still using the previous value of 50 ppb, Bangladesh being one of them 

[1,3]. The adsorption technology has been extensively used to remove toxics from water 

because of its low running costs, low maintenance demand and the effectiveness of the 

process to guarantee a good drinking water quality [4,5]. The different types of materials used 

for arsenic removal can be divided into three major categories: organic or natural ore, 

industrial by-product and man-made sorbents mainly relying on metal oxides. The 

optimisation of material removal capacity relies very often on the increase of adsorbent 

surface area and pore volume, the doping of materials with oxide with specific affinity 

toward As, or, the addition of specific chemical surface groups for either chemisorption or 

ion-exchange of dissolved ions [6,7]. The use of nano-sized metal oxides such as Organised 

Mesoporous Silica  has been regarded as a major technique is enhancing pollutant removal 

[8]. OMS materials are very versatile materials, easy to tailor and adapt to any specific 

pollutant. The development of OMS was first reported by researchers at the Mobil Oil 

Corporation [9]. Since then, many researchers have worked on the application of organised 

materials mainly for catalysis, air treatment and water treatment applications [10]. Organised 

mesoporous silicas are interesting materials due to their high surface area, narrow pore size 

distribution range and high porosity [11]. The most interesting feature of OMS is the 
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possibility to control, to a certain extent, most of its physical characteristics: mean pore size, 

porosity and surface area. OMS are useful materials as they can be a support matrix for many 

doping of interest. The addition of metal oxides in OMS is largely reported, mainly for its use 

in catalytic reactions [12] and [13] and in the removal of specific pollutant [14]. Production 

of mesoporous carbon can also be prepared using OMS as a template [14] and these materials 

have been successfully applied as adsorbents for water pollution control [15]. The same idea 

can be applied in order to create mesoporous metal oxides [16].  

Previously, the potential for optimising the As adsorption capacity of coated OMS has been 

briefly presented [17]. In this current work a comprehensive and full detailed study is 

presented, covering both the production of the coated OMS sorbents and the impact on the As 

adsorption characteristics of these materials. 

Li reported a coating process for iron oxides loading onto OMS for enhanced As(V) 

adsorption. Li showed that a layer by layer coating process was an efficient technique for iron 

loading into OMS in regards to As(V) adsorption [18].  

Other studies reported innovative technics to load iron oxides into Organised Mesoporous 

Carbon (OMC), aluminium oxides into OMS or the direct production of Organised 

Mesoporous Iron oxides and their used in removing arsenic or fluoride [19–22]. The removal 

capacities reported were in the range of 0.16 to 4.1 mg.g-1 for As(V), 4.0 to 7.3 mg.g-1 for 

As(III) and 75.1 mg.g-1 for F-. 

The originality of the present work relies onto the possibility of tailoring an adsorbent to 

match a specific groundwater contaminated by a pollutant present under two different 

oxidation stages, namely As(V) and As(III). Different ratio of iron and aluminium oxides 

were coated onto the 2D and 3D OMS materials and used to control the selectivity of the 

adsorbents for potential arsenic removal. The chemical and physical properties of the coated 

Al and Fe oxides OMS are fully characterised and discussed. Moreover adsorption of both 
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As(III) and As(V) are fully investigated, the effect of pH, the kinetic and diffusion of the As 

species into these materials are compared. Finally, the benefit of using organised materials 

over unorganised materials both in terms of adsorption removal capacity and diffusion or 

kinetic is discussed. The unorganised iron and aluminium oxides used as references were 

produced under the same synthesis conditions.  

2 Materials and methods 

2.1 Synthesis of 2D and 3D-Organised mesoporous silica coated with Fe and Al oxides 

Organised Mesoporous Silica, KIT-6 (3D organised) and SBA-15 (2D organised) were 

produced using a modified method presented by Rumplecker and previously reported [17,23]. 

Briefly, for the production of SBA-15, a solution of 252 g of deionised water and 7.7 g of 

HCl at 37 % was used to dissolve 13.9 g of Pluronic P123. After dissolution of the surfactant, 

25.0 g of TEOS was added. The solution was stirred in Duclan glass bottles for 24 h at 35 °C 

using a silicon oil bath. The bottles were then placed in an autoclave to undergo a 

hydrothermal treatment (at 40 °C, 60 °C, 80 °C or 100 °C) for 24 h under static conditions. 

The solid product was then filtered without any washing and dried for 48 h at 95 °C in an 

oven. The surfactant was removed by calcination in flow of air at 550 °C for 6 h with a 

temperature ramp of 1 °C.min-1 and a flow of air set at 100 mL.min-1. Similar steps were 

followed to produce the KIT-6 materials with some alterations: 9.0 g of P123, 325 g of 

deionised water and 17.4 g HCl were used. After complete dissolution of the surfactant, 9.0 g 

of butanol was added. Further steps were the same as for SBA-15 synthesis except the drying 

time which was reduced to 24 h. Mesoporous silica were named KIT-XX °C and SBA-XX 

°C where XX is the hydrothermal temperature used in the synthesis. The 3D-organised 

mesoporous silica KIT-100 °C was selected for aluminium and iron doping because of its 

higher mesoporosity. This process was carried out using a solvent evaporation method; 0.8 M 
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aluminium and iron nitrate in absolute ethanol solutions were used to coat the mesoporous 

silica. Different loading percentage were studied: 1 % to 8 % in one impregnation step and 15 

% to 30 % in three impregnation steps. The percentage loading is based on the internal pores 

filling by Al2O3 or Fe2O3. The selected amount of iron or aluminium solution was added at 

once onto the mesoporous silica and was left under stirring for 1 h. After homogeneous 

dispersion of the solution, the HDPE bottles were placed in an oven at 60 °C to undergo 

solvent evaporation. The resulting powder was then calcined at 210 °C or 250 °C into a 

chamber furnace to eliminate the nitrate salts following the reactions presented in Equation 

(1) and (2). Nitrate is usually decomposed into NO2, NO, NO2
- and NO3

2- for clarity reason 

the nitrogen species were reported as N2 [24]. Coated mesoporous silica were named KIT-YY 

ZZ % where ZZ is the percentage of coating and YY the corresponding metal salt (Al or Fe). 

( ) O9H+3.75O+1.5N+O0.5FeO.9HNOFe 22232
 C210

233  →
°  (1) 

( ) O9H+3.75O+1.5N+O0.5AlO.9HNOAl 22232
 C250

233  →
°  (2) 

A set of mixed iron and aluminium coated mesoporous KIT-100 °C was produced by varying 

the relative percentage of iron and aluminium while keeping constant the total metal loading 

percentage at 8 %. The same coating procedure as for single metal oxide coating was 

followed. Mixed metal coated mesoporous silicas were named KIT-8 %-Fe/Al-AA/BB where 

AA and BB are the iron and aluminium relative content. In order to compare the impact of 

the 2D and 3D organisation on the diffusion of As(III) and As(V), raw unorganised iron and 

aluminium oxides were produced. The synthesis procedure followed was similar to the one 

used for metal oxide coating.  

2.2 Adsorbents characterization 

The BET (Brunauer, Emmett and Teller) surface area, porosity and average pore size of the 

different materials produced were measured using a Nova 4200e Surface area and pore size 
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analyser form Quantachrome Instruments. XRD (X-Ray Diffraction) analysis was carried out 

to first ascertain the organised structure of the OMS materials produced. The equipment used 

was a PANalytical X’pert model from Philips. Radiation was carried out by a Cu K-alpha 1 

lamp at wavelength 0.154056 nm. A FEI Tecnai F20 Field emission high-resolution TEM 

(Transmission Electron Microscopy) was used to verify the 2D and 3D organised structure of 

OMS and coated OMS. The TEM used had a 200kV accelerating voltage giving it sufficient 

resolution for level imaging at the nm scale. The OMS and coated OMS samples fine powder 

were dispersed in acetone to ensure good dispersion of the particle and limit their 

agglomeration. The samples were then spread onto a CuO grid for analysis. An EOL JSM-

6500F field emission SEM equipment was used for SEM-EDX (Scanning Electronic 

Microscope with Energy Dispersion X-Ray) analysis. Samples were analysed by FTIR 

(Fourier Transformation Infra-Red) using the KBr tableting method. A PerkinElmer 

Spectrum One FT-IR spectrometer instrument was used. The immersion technique was used 

to measure the PZC of the raw KIT material or KIT-100 °C as well as the PZC of KIT-Fe 8 

% and KIT-Al 8 % materials. The procedure presented by Bourikas et al. was followed, [25]. 

A solid to liquid ratio of 1 % w/w was used. The corresponding materials were weighted in 

60 mL plastic jars and solutions of different initial pH having an ionic strength of 0.1 M NaCl 

were used. Time before equilibrium was reached was selected as 24 h.  

2.3 As(III) and As(V) adsorption onto coated OMS experiments 

2.3.1 Chemicals and equipment used 

The chemicals used during this work were all received from Sigma Aldrich and were all of 

reagent grade quality or higher. Deionised water with a resistivity of 18.2 MΩ.cm was used 

in the different solutions. Appropriate amounts of Na2HAsO4.7H2O and NaAsO2 were 

dissolved in deionised water to produce As(V) and As(III) stock solutions of 1000 ppm 
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respectively. 100 mg.L-1 of NaHCO3 was added in solutions used in adsorption experiments 

as a pH buffer. The pHs of all solution were adjusted using dilute solutions of HCl and 

NaOH. 

2.3.2 Optimisation experiments 

The first set of experiments explored the effect of iron and aluminium oxides percentage 

loading onto the OMS. KIT materials loaded with increasing Fe or Al oxides loading 

percentage were used to remove As(III) or As(V). 1.0 g.L-1 of material was used in 50 mL 

solution of 50 ppm of arsenic at pH 7 [17]. Solutions were stirred on a horizontal shaker for 

48 h. The second set of experiments explored the effect of co-coating Fe and Al oxides onto 

the OMS at different ratios and studied the potential of tuning the adsorption capacity toward 

the arsenic species. Arsenic adsorption experiments using As(III) and As(V) in single or 

binary systems were carried out. The same experimental conditions were used: 1 g.L-1 of 

adsorbent, 50 mL of 50 ppm of As solution at pH 7 in 60 mL glass flasks and 48 h 

experiment time on a horizontal shaker working at 100 rpm. 

2.3.3 pH effect on optimised sorbents and isotherm of adsorption 

The effect of pH onto As(III) and As(V) adsorption onto some selected coated OMS, KIT-Al 

8 % and KIT-Fe 8 %, were carried out in batch systems. The materials exhibited very high As 

removal capacity, so, initial adsorption concentration of 55 ppm of As(III) and As(V) was 

used alongside a dosage ratio of 1 g.L-1. Initial pHs ranging from 2 to 12 and equilibrium pHs 

were recorded by a Thermo Scientific Orion 3 Star pH meter equipped with a Camlab pH 

probe accurately calibrated over the study pH range.  The isotherms of adsorption of arsenic 

species onto selected adsorbents were performed with initial As concentrations ranging from 

1 to 50 ppm at pH 7.  
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2.3.4 Arsenic kinetics of adsorption onto 2D and 3D organised mesoporous silica coated 

with Fe and Al oxides and raw Fe and Al oxides 

The influence of organised or unorganised structured materials onto the kinetic removal of As 

species was tested in 1 L beaker containing 1 L solution. The adsorbent dosage was 1 g.L–1, 

initial pH 7 and the magnetic stirrers used working at 300 rpm. The kinetics data points come 

from regularly taken samples of 5 mL which were diluted to 10 mL using deionised water. 

Experiments were carried out over 48 h with initial concentration of 50 ppm approximately. 

2.4 Concentration Analysis 

The only dissolved element monitored in this study was arsenic and its analysis was carried 

out by ICP-OES. A Thermo Scientific IRIS Intrepid model was used at a working wavelength 

of 189.0 nm. Before being analysed, the samples were filtered through 13µm cut off cellulose 

acetate filters and acidified at 2 % HNO3. Data points obtained are the average of three 

consecutive analyses of the same sample. 

2.5 Mathematical modelling 

2.5.1 Isotherms models 

The equilibrium data was modelled using Langmuir and Freundlich adsorption models, under 

Sigma plot 11.0 software. These models are usually represented by Equations (3) and (4) 

[26]. 

Langmuir model: 

eL

eLm

e
Cb

Cbq
q

+
=

1
(3) 

Freundlich model: 

n

eFe CKq = (4) 
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where qe is the equilibrated adsorption capacity for a given initial concentration in mg.g-1, qm

is the maximum pollutant adsorption capacity expressed in mg.g-1 and Ce is the concentration 

in bulk solution at equilibrium in mg.L-1. bL is the Langmuir constant in L.mg-1 and KF is the 

Freundlich coefficient in mg1-n.g-1.Ln. n is the Freundlich equation constant and is 

dimensionless. The separation factor RL presented by Weber and Chakravorti is known as the 

separation factor and defined by equation (5) [27].  

oL

L
Cb

R
+

=
1

1
(5) 

where Co is the initial pollutant concentration in mg.L-1. This separation factor is used to 

characterise the nature of the adsorption with unfavourable adsorption having a RL > 1, 0 < RL

< 1 for favourable reaction and RL = 0 for irreversible reaction. 

The Dubinin-Radushkevich (DR) isotherm is very often used to model adsorption isotherm 

data and determine the mean free energy of adsorption [28]. By using equation (6) and (7) the 

adsorption data can be modelled, while using equation (8), the mean free energy of 

adsorption E, expressed in kJ.mol-1 can be calculated [29]. 

( )2
RDadk

se eqq
ε−

×= (6) 









+=

e
RD

C
RT

1
1lnε (7) 

adk
E

2

1
= (8) 

where qs is the theoretical isotherm saturation capacity calculated in mg.g-1, kad the DR 

isotherm constant in mol2.J-2 and ɛDR is the DR isotherm variable expressed in J.mol-1. 

2.5.2 Non-linear kinetics models 

The pseudo first and pseudo second order models were applied to the kinetic experiments 

data obtained using Equations (9) and (10) [30,31].
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Pseudo first order model: 

tk
q

qq

e

te

1ln −=






 −
(9) 

Pseudo second order model: 

( )
tk

qqq ete

2

11
+=

−
(10) 

where qt is the amount of pollutant adsorbed at a specific time t in mg.g-1; k1 and k2 are the 

pseudo-first order kinetic constant and the pseudo second order kinetic constant expressed in 

in min-1 and in g.mg-1.min-1, respectively. 

2.5.3 Diffusion modelling 

The diffusion models were developed to study the diffusion of adsorbate inside the 

adsorbents. One of the first hypotheses used in these models is that the bulk liquid diffusion 

is not a limiting step, which implies that stirring energy is sufficient. In this study, two 

different diffusion models were applied: the intraparticle diffusion model and the Boyd 

diffusion model. The intraparticle model links the adsorbed quantity of pollutant at a given 

time with the time t following Equation (11), [32,33]. 

5.0
tkq ait = (11) 

where kai, the intraparticle diffusion rate is a constant expressed in mg.g-1.h-0.5 and i

represents the diffusion stage number. The plot of qt versus t is linear when the intraparticle 

diffusion is the main resistance step in the experimental conditions.  

The Boyd diffusion model is usually expressed by the Equation (12), [34]. 

( )tBn
nq

q

ne

t ×−















−= ∑

∞

=

2

1
22

exp
16

1
π

(12) 
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where B is a coefficient expressed in h-1. Resolving equation (12) can be done using 

Equations (13) and (14) based on the work of Reichenberg, [35].  

For qt/qe ≥ 0.85  









−−=×

e

t

q

q
tB 1ln4977.0 (13) 

For qt/qe < 0.85  

2

2

3






































−−=× e

t

q

q

tB

π

ππ (14) 

Using B an average diffusion coefficient can be approximated using equation (15) as 

explained by Reichenberg, [35]. 

2

2

r

D
B

eff
×

=
π

(15) 

where r is the radius of the material particle. If the resulting plot of B×t versus t is a straight 

line passing through the origin then the main resistance is based on intraparticle diffusion and 

Deff = Dintra [34]. Using an optimisation tool, the different diffusion constant were calculated 

for each diffusion step identified [34]. 

3 Results and discussion 

3.1 Characteristics of adsorbents samples  

3.1.1 Surface area, pore size distribution and porosity analysis 

The pore size distributions of the uncoated KIT materials produced at different temperatures 

are presented in Figure 1 (a). It can be seen that the average pore diameter increases for KIT 

materials with an increase in the hydrothermal curing temperature. The wider average 

diameter obtained was evaluated at 6.4 nm for the KIT-100 °C material. In Figure 1 (b) it can 
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be noted that the KIT-100 °C displays a higher mesopores volume than the SBA-100 °C. The 

increase in the N2 adsorbed volume is higher in the region of 0.6 and 0.8 relative pressure. 

Moreover, the steady higher increase of N2 sorbed in the region of 0.1 and 0.5 relative 

pressure proves that the micropore volume of KIT-100 °C is also higher than the SBA-100 

°C. Finally, the macropores volume of both materials is very limited as shown by the plateau 

achieved for both N2 adsorption isotherms at relative pressure between 0.8 and 1.0. It can also 

be noted that both isotherms follow the type IV isotherm with a sharp increase and rather 

wide hysteresis loop type H1 as defined by IUPAC [36]. These features are characteristic of 

organized mesoporous materials with a narrow pore size distribution. Due to the superior 

physical characteristics displayed by KIT-100 °C mesoporous silica, this material was then 

selected for iron and aluminium oxides coating. 

Table 1 presents the BET analysis results of the two series of KIT-100 °C materials coated by 

increasing iron or aluminium oxide content. It was found that, after 8 % of the pores were 

filled by iron oxides, the coated OMS presented a significant loss in surface area and 

porosity. This same difference is noted after 3 % of coating in the case of aluminium oxide 

coating. For samples coated by 15 % of metal oxides and higher, the coating procedure was 

achieved in two steps which might have increased the pore blockage and might have 

increased the amount of remaining unoxidized nitrate groups in the pores. In the case of 

aluminium oxides, the high presence of remaining unoxidized nitrate groups is clearly 

responsible for the early pore filling. The presence of remaining nitrate groups was identified 

by FTIR analysis and is discussed below.  

Table 2 summarises the physical characteristics of the materials used in different adsorption 

experiments. The BET analysis measured a very low surface area and porosity for the Al 

oxide sample. The very low measurement obtained can be accounted for by the release of 

species from the remaining nitrate or an obstruction of the pores by nitrate molecules. Al 
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oxides produced using conventional sol-gel method usually display surface area in the region 

of 200 m2.g-1 and porosity around 0.4 cc.g-1 [37]. 

3.1.2 XRD analysis: organised structure of material and coating identification 

The amorphous nature of SBA-15 and KIT-6 materials produced at 100 °C was confirmed as 

no silica oxides crystal was identified, as no major peaks were identified at high diffraction 

angle, see Figure 2 (a). The XRD spectrum of both materials show the organised nature of 

their respective structure as indicated by the low angle peaks noticed at 0.7 ° and 1.1 ° 

respectively (Figure 2 (b)). These peaks are characteristic of organised mesoporous materials 

and are always reported in this region [38] and [39]. The XRD analysis on the coated OMS 

did not allow a clear identification of the iron and aluminium oxides coated on the surface, 

probably due to the fact that most of oxides were present inside the pores. Iron oxides were 

identified as Hematite, while aluminium oxides could not be specifically identified as seen in 

Figure 3, even if Boehmite is the most probable crystal formed. 

3.1.3 TEM imaging analysis 

Figure 4 (a) and (d) presents the 3D organised KIT-6 structure and Figure 4 (b) and (e) the 

2D organised structure of SBA-15. It is difficult to clearly identify the 3D organised pattern 

but the 2D pattern is clearly visible in both directions in Figure 4 (b). Coating SBA-15 

internal walls with iron oxide appears to lead to particles growth in-homogeneously 

distributed into the pores, as seen in Figure 4 (e) and (f). The coating process is in reality 

closer to particle growth inside the pores rather than an homogeneous coating, as some gaps 

can be spotted inside the pores, Figure 4 (f). There was no oxide growth noticed outside the 

pores for SBA-Fe 8 %, KIT-Fe 8 %, SBA-Al 8 % or KIT-Al 8 % materials. 

3.1.4 FTIR analysis: chemical surface groups identification 

SBA-100 °C and KIT-100 °C were analysed by FTIR prior to coating by iron and aluminium 

oxides. KIT-Fe 8 % and KIT-Al 8 % were studied by FTIR before and after adsorption by 
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As(III) and As(V) of 50 ppm at pH 7. The FTIR analysis of KIT-100 °C and SBA-100 °C is 

presented in Figure 5 (a) while KIT-100 °C, KIT-Fe 8 % and KIT-Al 8 % are shown in 

Figure 5 (b). The peak at 1635 cm−1 indicates the presence of free water molecules and 

bonded water molecules onto the two silica samples. The broad peak at 3430 cm-1 is 

attributed to the O-H stretching bonds. In the present case, this peak comes from the water 

molecules bonded onto the silica since all hydroxyl (OH-) groups from silanol (Si-O-H) 

groups have been removed during the calcination process at 800 °C [40] and [41]. The double 

peak at 1160 and 1070 cm-1 is characteristic of Si-O bonds as well as the peaks noticeable at 

965, 800 cm-1 and the one starting at 500 cm-1 [42]. There is no major difference between the 

two sample spectra as they are both amorphous silica. The KIT-Fe 8 % spectrum shows a 

wider and higher peak at 3430 cm-1 revealing a higher content of O-H bonds. These bonds 

come from a higher presence of bonded water, as seen with the higher peak at 1635 cm-1, and 

the presence of Fe-OH groups. The clear higher peak at 1170 cm-1 compared to the peak at 

1070 cm-1 is characteristic of Fe-O bonds as presented by Martinez et al. [42]. The KIT-Al 8 

% spectrum presents an even wider and higher peak in the region of 3500 to 3000 cm-1

revealing a very high increase in O-H bonds. These bonds can be attributed to Al-OH surface 

groups. The presence of a sharp peak at 1386 cm-1 proves that -NO3 groups from the 

aluminium nitrate salt used during the coating process were not completely removed during 

the calcination step at 250 °C. This peak is related to -N bonding and can relate to any 

nitrogen containing species (N2, NO, N2O). The relative increase of the peak at 1200 cm-1

reveals the presence of Al-O bonds. The spectrum thus obtained is very similar to the one 

produced by Shin et al. for the adsorption of phosphate from water [43]. 

3.1.5 SEM-EDX 

An EDX analysis was carried out only on KIT-Fe 8 % sample in order to verify the iron 

coating process. The identification spectrum and the quantitative analysis of a small portion 
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of the sample are reported in supporting information, Figure S1 and Table S1. The total iron 

content of the sample is quite high (~ 11 %) on the sample area analysed. The real sample 

iron content is even higher when the carbon counted is removed as that is due to the carbon 

coating (~ 14.5 %) in sample preparation. This value can be compared with the 8 % Fe2O3

content coated into the pores. This value means that 8 % of the pore volume is occupied by 

Fe2O3. Using the KIT-6 BET porosity of 1.356 cc.g-1 and assuming Fe2O3 density being 5.24 

g.cc-1, the 8 % Fe2O3 pores loading results in nearly 20 % Fe w/w in KIT-Fe 8 % as shown in 

equation (16). 

%20%/%
32

3232 ≈×××=
OFe

Fe
OFeporosity

M

M
dOFeBETwwFe (16) 

The SEM-EDX analysis gives then a good approximation of the metals content (14.5 % 

instead of 20 %) in the coated OMS samples. The average iron content measured is slightly 

lower than the theoretically coated iron weight attributable to the iron oxide being coated 

inside the pores.�

3.2 Optimised sorbents analysis 

3.2.1 Effect of the percentage of metal oxides coating onto As(III) and As(V) adsorption 

It was shown that, after 8 % loading of iron or aluminium oxides into KIT materials, very 

little improvement of As(III) or As(V) was observed as shown in Figure 6. The percentage 

removal evolution generally followed the surface area available (Table 1). The KIT-Al 

material showed a very high As(V) removal capacity, while also exhibiting a very low 

removal capacity for As(III). In comparison, KIT-Fe materials possess a higher As(III) 

adsorption capability than As(V) and these two removal capacities are very close. Hence, 8 % 

metal oxide coatings were used for subsequent optimisation experiments. This percentage 

coating is a good optimum balance between surface area, pore availability and arsenic 

removal efficiency. 
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3.2.2 Fe and Al oxide relative loading effects onto As(III) and As(V) removal in single and 

binary solution systems 

The removal of As(III) and As(V) by 8 % oxides coated OMS materials having different Al 

to Fe oxides ratio is presented in Figure 7. Adsorption capacity achieved for As(III) and 

As(V) in single and binary systems are presented as a function of the Fe oxides percentage 

coating onto the 8 % loaded OMS, the Al oxides percentage being the remaining percentage. 

It was found that the arsenate adsorption capacity decreases when the Fe oxides coating 

content decreases, or when the Al oxides coating percentage increases. This was expected as 

the Al oxides displayed the higher As(V) adsorption capacity. The As(III) adsorption 

capacity was nearly constant, independently of the Al to Fe oxides coating configuration 

tested. The results thus show that the best coating configuration, in terms of overall 

adsorption capacity, i.e. As(III) + As(V), is 10 % Fe oxide and 90 % Al oxide coating. 

Similar results have been reported for removal of As(III) and As(V) using iron oxide coating 

activated alumina [44]. The simultaneous removal of As(III) and As(V) did not show major 

differences, as seen in Figure 7 (b). The arsenate and total arsenic removal capacity of the 

coated OMS generally follow the same trend in single or binary configuration, and the As(III) 

and As(V) adsorption capacity are very similar in both cases. However, the materials with Fe 

oxides coating percentages between 27 to 75 display a total As removal capacity higher than 

the As(V) adsorption capacity in single configuration. This result shows that parts of the 

adsorption sites for As(III) and As(V) are different, indicating that the total removal capacity 

of the materials increases in binary configuration. Also, in the single As species 

configuration, As(III) adsorption capacity is around 6.67 mg.g-1 and for As(V) it reaches 

10.60 mg.g-1. In the binary system, the As(V) adsorption capacity remains similar at around 

10.20 mg.g-1 and the As(III) adsorption capacity drops down to 1.37 mg.g-1. In this case, the 

maximum number of As adsorption sites increases slightly, from10.60 to 11.57 mg.g-1 with 
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As(III) adsorption being predominantly favoured. In the case of low Fe oxide coatings 

percentage i.e. < 50 %, the As(V) adsorption is generally favoured over As(III) adsorption in 

terms of total arsenic removal. It was easier to tailor the coated OMS materials toward As(V) 

than As(III) due to the superior As(V) adsorption capacity of Al oxide coatings. The results 

demonstrated the ability to tailor one material capacity toward the characteristics of a specific 

groundwater. Nevertheless, the possibility of optimising the coated OMS materials is limited 

by the maximum adsorption capacity of the pure single metal oxides and cannot cover the full 

range of groundwater As(III) to As(V) ratio range, i.e. As(III) : As(V) from 0 : 1 to 1 : 0. The 

range covered by the optimisation technique presented in this paper for As(III) : As(V) is 

0.16 : 0.84 to 0.97 : 0.13 and is presented in detail in Table 3. 

3.3 pH effect analysis 

The pH study of As(III) and As(V) adsorption onto KIT-Al 8 % and KIT-Fe 8 % is presented 

in Figure 8. It was found that only KIT-Al-8 % was able to remove completely As(V) at 

around pH 5 and 55 ppm. The profiles of As(V) adsorption capacity in function of pH of 

KIT-Al 8 % and KIT-Fe 8 % have similar trends but seem to be shifted by 1 pH value. The 

PZC of KIT-Al 8 % and KIT-Fe 8 % were evaluated at pH 5.4 and 4.5 respectively. The 

higher PZC of aluminium coated KIT material is partly responsible for the better 

performance of KIT-Al 8 % in removing As(V) at neutral pH when compared to KIT-Fe 8 % 

material. As(III) removal is not influenced by pH change until pH 9, when arsenite ions start 

to be negatively charged (pKa ~ 9.2) and both materials become negatively charged as well 

(pH > PZC). It is noticed that the As(III) removal capacity of KIT-Fe 8 % is better than its 

As(V) removal capacity only at high pH. At pH between 7 and 9, KIT-Al 8 % has better 

As(V) than As(III) removal capacity while, at the same pH range, KIT-Fe 8 % As removal 
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capacity are inversed. This pH study thus reveals that it is only possible to tailor the As(III) to 

As(V) removal ratio of the coated OMS for As removal at pH between 7 and 9. 

3.4 Concentration effect analysis 

Figure 9 illustrates the isotherms of As(III) and As(V) adsorption onto KIT-Fe 8 % and KIT-

Al 8 %. The As(III) is removed more efficiently by KIT-Fe 8 % than by KIT-Al 8 % while 

the opposite trend is displayed for As(V) removal. As(III) isotherm is closer to a Freundlich 

type isotherm than a Langmuir type for As(III) removal while it is the opposite case for 

As(V) isotherms as per the respective r2 values from Table 4. The isotherm shape of As(III) 

removal by KIT-Al 8 % shows the very unfavourable nature of the adsorption process 

involved. The values reported in Table 4 for qm for As(III) removal are very high but the 

related bL value is very low. This combination gives a very slow increase of the qe value at 

low concentration but implies a continuous increase until reaching a qm value of nearly 81 

mg.g-1. Arsenic removal efficiency of coated OMS materials at low concentration is very low, 

especially for arsenite adsorption as presented by qe values at 0.1 ppm (qe-0.1). Moreover, 

only As(V) adsorption onto KIT-Al 8 % is a relatively favourable process as the RL-0.1 value 

is lower than 0.8. It is worth mentioning that the As(III) adsorption capacity of KIT-Fe 8 % is 

higher than KIT-Al 8 % especially at high concentration and this difference decreases at low 

concentration as seen in Table 5. The tests performed in order to modify the coated OMS 

materials for specific adsorption are then very dependent on the concentration range used in 

the test. The optimisation study was carried out at a very high initial concentration (~50 

ppm).  

Table 6 gives a comparison of the observed materials removal capacity with data from the 

literature for equivalent materials having high surface area and high porosity. The Fe and Al 
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coated OMS materials developed in this work display high As(III) and As(V) removal 

capacities which are generally higher than equivalent coated mesoporous silica materials. 

3.5 Kinetic removal of arsenic in 2D, 3D and unorganised sorbents 

Figure 10 presents the kinetic removal of arsenite by unorganised, 2D and 3D organised 

materials coated by iron (a) or aluminium oxides (b) and the kinetic removal of arsenate by 

the same materials in Figure 10 (c) and (d) respectively. From Figure 10 (a), the As(III) 

removal by Al oxides is very limited compared to the removal by Fe oxides (Figure 10 (b)). 

The As(III) removal by KIT-Al 8 % is higher than that of pure Al oxide at equilibrium which 

is in opposition to the total weigh of aluminium oxide present in each sample. When Fe 

oxides are used, the unorganised Fe materials display a higher capacity than the organised 3D 

material which itself present a higher capacity than the 2D organised material. The As(III) 

removal capacity at equilibrium of the Fe oxide material can actually be related to the total 

iron oxide content by weight of the materials: Fe oxide (100 %), KIT-Fe 8 % (20 %), SBA-Fe 

8 % (15.4 %).  

The As(V) removal presents very similar trends as seen in Figure 10 (c) and (d). The main 

difference is the much higher removal capacity of the Al oxides materials when compared to 

the Fe oxides materials. It was also noticed that the KIT-Al 8 % material has a higher 

removal capacity than the unorganised Al-oxides. The Fe oxide materials show a very high 

removal capacity for the unorganised materials when compared to the 2D and 3D organised 

materials, a difference that can be again linked to the total weight of iron oxides in the 

materials.  

In terms of removal kinetic, minor differences can be noticed, but the differences of qe

reached make the comparison difficult. Relative kinetic curves are thus presented in Figure 

11. In Figure 11 (a) a small difference in removing As(III) by Al oxides materials being 
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organised or not was found, while in Figure 11 (b) differences are visible. The kinetic 

performances of the iron oxides based materials toward As(III) follow the trend: unorganised 

> 2D > 3D. In the case of As(V) removal, little effect of the organisation of Fe oxides 

materials is noticed (Figure 11 (c)) while diffusion of As(V) in Al materials is affected by the 

organisation of the materials (Figure 11 (d)). The materials can be classified from the 

quickest to the slowest in removing As(III): SBA-Al 8 % > KIT-Al 8 % > Al-oxides. The 

As(III) diffusion is more affected by the pore size of Fe based materials while As(V) is more 

affected by the pore size of Al based materials. Generally, the organisation of the materials in 

term of kinetic performances has little impact on the removal of As(III) and As(V). The 

experiments were carried out with material of small particle size (Ø < 75 µm); in the case of 

bigger particle, an organised structure might have bigger impact than unorganised materials, 

especially because of a better access to the adsorption sites. Table 7 gives the pseudo first and 

pseudo second order model parameters obtained. In general the k1 and k2 values obtained for 

As(V) are higher than that obtained for As(III) removal for both Fe and Al based materials. 

This difference was already noticed in the various previous figures. The data obtained for the 

pseudo first and pseudo second order models, k1 and k2 values, are relatively higher than 

equivalent data found in the literature. For example Liu et al. found k1 and k2 values of 

5.50×10-4 min-1 and 8.80×10-3 g.mg-1.min-1 for As(III) and 5.33×10-4 min-1 and 6.83×10-4

g.mg-1.min-1 for As(V) removal by iron coated bamboo charcoal at starting arsenic 

concentration of 32 ppm [51]. 

3.6 Diffusion and adsorption investigation 

Generally, the intraparticle diffusion rate is constant over a period of time at initial condition 

only. In fact several regions can usually be noticed in the diffusion of pollutants in porous 

materials [34]. The presence of different linear regions in the plot of qt versus t is usually 
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assumed to show the predominance of the resistance to diffusion of one process over another 

[34]. The diffusion of As(III) and As(V) in unorganised and organised materials was studied 

using both the intraparticle diffusion model and the Boyd diffusion model. 

3.6.1 Intraparticle diffusion model 

Figure 12 [(a) and (b)] presents the intraparticle diffusion modelling applied to As(III) and 

As(V) adsorption onto unorganised Al oxides and Al oxides coated OMS while Figure 12 [(c) 

and (d)] presents the same data obtained for Fe oxides and Fe oxides coated OMS. The same 

trends noticed in the kinetic experiments can be noticed for the diffusion modelling. 

Moreover it can be observed that As(III) and As(V) adsorption in Al oxides is mainly 

following a three-step diffusion process while the diffusion of these species in Fe oxides 

based materials seems to follow only a two-step diffusion process. 

The intraparticle model does not follow a straight line which implies that intraparticle 

resistance is not the only one present or is evolving under the experimental conditions. The 

film diffusion cannot be limiting the arsenic adsorption as the particles are very small and the 

stirring speed sufficiently high. The presence of surface diffusion resistance is then an 

explanation for the profiles noticed. The decrease of the percentage of sorption sites available 

can also reduce significantly the diffusion of pollutant in the materials. In the present case it 

seems that, when the adsorbent coverage reaches a certain percentage, the diffusion nature 

changes thus decreasing significantly. As the adsorption is taking place, pore diffusion is 

initially the main resistance to As adsorption, but it is then replaced by surface resistance. 

There is no real correlation between the organisation dimension of the materials and the 

number of diffusion steps and/or the steepness of these steps. The intraparticle diffusion 

coefficients obtained are presented in Table 8. 

In general, higher values were obtained for As(V) diffusion coefficients in the OMS materials 

studied. However, it should be noted that As(III) diffuses more quickly in Fe unorganised 
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materials than in organised materials while the opposite trend is the case for As(V). 

Intraparticle diffusion seems to be the limiting step in the diffusion of As(III) and As(V) in 

the coated OMS materials. 

3.6.2 Boyd model 

The Boyd model plotted for the different materials studied can be found in the supporting 

information Figure S2. The Boyd model is not a straight line passing thought the origin, 

though, in most cases, the Boyd model can be approximated to a straight line. The 

intraparticle diffusion remains the limiting diffusion step. Intraparticle diffusion can be 

divided into pore diffusion, surface diffusion and surface adsorption. In the materials studied, 

the second segment of the Boyd model is characteristic of surface diffusion being the limiting 

step in the adsorption process. No clear difference can be noticed for the Boyd models 

applied to unorganised, 2D or 3D organised materials in terms of diffusion profile for the 

intraparticle model. In the case of As(III) adsorption onto Al based sorbents, the Boyd model 

is a straight line for all materials and the diffusion pattern is similar for all materials, (Figure 

S2 (a)). For As(V) adsorption with these same materials, 2D organised materials perform 

better, followed by 3D organised materials and unorganised materials, (Figure S2 (b)). The 

Fe based materials behaviour toward As(III) and As(V) adsorption is the opposite of that of 

Al based materials. For As(III) adsorption a clear difference can be noticed between 

unorganised and organised materials, while this difference is less clear for As(V) adsorption. 

The diffusion of As(III) and As(V) in Fe based materials follows 2 steps. This trend 

underlines the presence of surface diffusion being more of a resistance toward As adsorption 

in Fe based materials than in Al based materials. In general 2 steps are identified in the case 

of 2D or 3D organised materials. The presence of different steps in the diffusion of As inside 

the pores in the case of organised materials could reveal the presence of a resistance to 

diffusion due to the presence of channels and the effect of the walls onto the diffusion of the 



  

25 

species in these materials. Surface diffusion is decreased, in organised materials due to the 

close presence of other adsorption sites and the effect of the wall. The resistance toward As 

diffusion in unorganised materials comes from the low porosity of these materials and a low 

accessibility of the sorption sites.  

The B values and associated Deff values obtained for the As(III) and As(V) adsorption onto 

the coated OMS sorbents are presented in Table S2. The difference in particle diameter 

explains the difference in the diffusion coefficients. The small particle size of the materials 

used in this study is mainly responsible for the low diffusion coefficient of As(III) and As(V)  

inside the unorganised and coated OMS material. The lower the Deff values the better the 

diffusion. In general the diffusion coefficients obtained are higher for As(V) adsorption than 

for As(III) adsorption. This is in accordance with the kinetic parameters obtained, As(III) 

being removed more quickly by coated OMS than As(V). 

3.7 Adsorption processes mechanisms 

Figure 5 (c) presents the FTIR spectra of KIT-Al 8 % materials before and after adsorption 

with As(III) and As(V) while Figure 5 (d) focuses onto the iron coated OMS. It can be 

noticed that the peak at 1390 cm-1 corresponding to the -NO3 bonds disappears after 

adsorption experiments. Remaining -NO3 groups dissolve in water during the adsorption 

experiments and can also react quickly with both As(III) and As(V) providing the possibility 

of chemisorption and the formation of precipitate (Al-As precipitate) at the surface or inside 

the pores.  

The increase of the 890 cm-1 peak for As(V) adsorption shows the formation of Al-As bonds 

and the presence of chemisorption or ion-exchange in the removal process of As(V) by KIT-

Al 8 %. In the case of As(III) adsorption, an increase in the 716 cm-1 peak is observed; this 

increase is also present for the As(V) treated sample. The peaks noticed for As(V) adsorption 
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are in concordance with the results from Myneni et al. who noticed two peaks for H2AsO4-

bonding onto Ettringite at 760 and 908 cm-1 and 2 peaks for the bonding of HAsO4
2- at 690 

and 865 cm-1 approximately [52]. As these two As(V) species are present at pH 7 the peaks 

are probably an overlapping of the two species respective peaks. In the case of arsenic 

adsorption onto KIT-Fe 8 % very little difference between the material before and after 

adsorption of both As(III) and As(V) can be noticed. This shows the predominance of 

physisorption processes over chemisorption in the removal of As by this material. The lower 

level of removal capacity of the material can also account for the difficulty in identifying 

clear peaks. Table 9 shows the DR isotherms parameters obtained for the adsorption of 

As(III) and As(V) onto KIT-Al 8 % and KIT-Fe 8 %. The energy of adsorption associated 

with the different processes shows that physisorption is governing all these adsorption 

reactions (E < 8 kJ.mol-1). Only the adsorption of As(V) by KIT-Al 8 % can be associated 

with ion-exchange or chemisorption to some extent. This is usually observed in the literature, 

for example the removal of As(V) by Al coated mesoporous silica made from silica rice was 

governed by chemisorption according to Wantala et al. [53]. 

4 Conclusion 

This work revealed the possibility of using specific iron and aluminium oxides coated 3D 

Organised Mesoporous Silica materials simultaneously in order to adsorb specific amounts of 

As(III) and As(V).  This procedure enables the newly developed materials to perfectly match 

specific groundwater characteristics. The materials produced were fully characterised and 

tested in batch experiments, showing a very high removal capacity, around 7.38 mg.g-1 for 

As(V) and 0.21 mg.g-1 for As(III) at 100 ppb. The pH effect showed very similar behaviour 

of As(V) adsorption by KIT-Al 8 % or KIT-Fe 8 % with a maximum adsorption capacity 

noticed at pHs closed the respective materials PZC. Very significant increase of As(V) 
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adsorption capacity was noticed at low pH: for KIT-Al 8 %, a maximum of 55 mg.g-1 at pH 5 

and, for KIT-Fe 8 %, a maximum of 35 mg.g-1 at pH 4. The possibility to tailor the coating of 

the OMS materials toward As(III) or As(V) using both iron and aluminium oxides will then 

be very dependent on the groundwater pH. Moreover the kinetic and diffusion studies 

demonstrated an insufficient effect of the 3D or 2D organisation structure compared to 

unorganised materials. Unorganised materials reached equilibrium more quickly than 

organised materials. Granulation of materials will be carried out to ascertain the potential 

higher diffusion properties of organised materials. Finally, the study showed that the main 

adsorption process was physisorption, with the presence of minor chemisorption mechanisms 

due to remaining -NO3
- groups from unoxidized nitrate compounds. 
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Figure 1 Pore size distribution of the KIT serie of materials produced at different temperature (a) and N2 adsorption 

isotherm of KIT-100 °C and SBA-100 °C (b) 

Figure 2 Full range XRD analysis (5 to 75 2θ) (a) with spectra shifted by 500 cps and low angle XRD analysis (0.1 to 5 

2θ) (b) with spectra shifted by 5x105 cps of OMS and selected coated OMS materials 
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Figure 3 XRD analysis of selected coated OMS and raw oxides. Full scan (5 to 75 2θ) with identified Fe and Al oxides 

phase XRD main peaks 
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Figure 4 TEM images of selected OMS and coated OMS. KIT-100 x38000 (a) and x43000 (d), SBA-100 x38000 (b) 

and x71000 (e) and SBA-Fe 8 % x71000 (c) and x97000 (f) 

(a) (b) (c)

(d) (e) (f)
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Figure 5 FTIR analysis of KIT-100 °C and SBA-100 °C, spectrum un-shifted (a) and comparison of KIT-100 °C and 

KIT coated with 8 % Al or 8 % Fe, spectrum shifted by 0.2 A.U. FTIR analysis of KIT coated with 8 % Al (c) or Fe 

(d) oxides before and after adsorption of As(III) and As(V) 
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Figure 6 Arsenic adsorption onto KIT-Fe (a) and KIT-Al (b) adsorbents loaded with increasing metal oxide content 

(adsorbent concentration is 1 g.L-1; initial corresponding arsenic concentration is ~ 50 ppm and equilibrium pH is ~ 

8) 

Figure 7 As(III) and As(V) single compound removal study (a) and simultaneous As(III) and As(V) removal study (b) 

using KIT coated with 8 % mixed Al and Fe oxides (adsorbent concentration is 1 g.L-1; initial corresponding arsenic 

concentration is ~ 50 ppm and equilibrium pH is ~ 8) 
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Figure 8 pH effect onto As(III) and As(V) adsorption onto KIT-Al 8 % (a) and KIT-Fe 8 % (b). Starting 

corresponding arsenic concentration is 55 ppm and adsorbent dosage is 1 g.L-1

Figure 9 Adsorption isotherms of As(III) and As(V) onto KIT-Fe 8 % (a) and KIT-Al 8 % (b). Equilibrium pH is 8 
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Figure 10 Kinetic experiments using Al and Al coated OMS materials for removing As(III) (a) and As(V) (c) or using  

Fe and Fe coated OMS materials in removing As(III) (b) and As(V) (d). Starting concentration is ~ 50 ppm 
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Figure 11 Relative kinetic removal of As(III) by Al and Al coated OMS (a) or Fe and Fe coated OMS (b) or As(V) by 

Al and Al coated OMS (c) or Fe and Fe coated OMS (d) 
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Figure 12 Intraparticle diffusion plot of As(III) (a) and As(V) (b) onto unorganised Al oxides, Al oxides coated 2D 

and 3D OMS and As(III) (c) and As(V) (d) onto unorganised Fe oxides, Fe oxides coated 2D and 3D OMS 
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Table 1 BET analysis results for the Fe oxides coating and Al oxides coating procedures applied to KIT-100 °C 

materials. These materials were used in the adsorption experiments related to the optimisation of the materials 

coating  

Fe 

loading 

Surface 

area 
Porosity 

Average 

pore 
size 

Al 

loading 

Surface 

area 
Porosity 

Average 

pore 
size 

Silica % m2.g-1 cc.g-1 nm Silica % m2.g-1 cc.g-1 nm
KIT 0 853.2 1.356 6.36 KIT 0 853.2 1.356 6.36 
KIT 1 607.2 0.866 5.70 KIT 1 591.3 1.034 7.00 
KIT 3 530.0 0.671 5.06 KIT 3 442.2 0.770 6.97 
KIT 8 520.9 0.575 4.42 KIT 8 207.8 0.434 8.36 
KIT 15 267.2 0.311 4.65 KIT 15 252.4 0.359 5.69 
KIT 20 271.9 0.315 4.64 KIT 20 294.1 0.387 5.26 
KIT 30 222.0 0.241 4.33 KIT 30 83.2 0.118 5.68 

Table 2 BET analysis summary of materials used in adsorption experiments  

Surface area Porosity Average pore size 

Name Silica m
2
.g

-1
 cc.g

-1
 nm 

KIT-Fe 8 % KIT 520.9 0.575 4.42 
KIT-Al 8% KIT 207.8 0.434 8.36 
SBA-Fe 8 % SBA 643.2 0.923 6.04 
SBA-Al 8% SBA 611.2 0.864 5.37 
Fe oxide - 203.2 0.231 4.54 
Al oxide - 11.3 0.001 0.49 

Table 3 Adsorption capacity of tailored coated OMS sorbents toward As(III) and As(V) 

OMS coating content Relative removal capacity for As Absolute As removal 

Fe oxides Al oxides As(III) As(V) As(III) + As(V) As(III) + As(V) 

% % % % % mg.g
-1

0 100 16.19 83.81 100 39.29 
10 90 17.73 82.27 100 46.09 
25 75 20.69 79.31 100 41.90 
50 50 33.67 66.33 100 27.32 
75 25 48.05 51.95 100 20.81 
90 10 61.33 38.67 100 20.17 
100 0 86.78 13.22 100 11.65 

Table 4 Langmuir and Freundlich models constants for As(III) and As(V) adsorption isotherms onto KIT-Fe 8 % 

and KIT-Al 8 %
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Adsorbent As qm bL×10 r2
KF n r2

mg.g
-1

 L.mg
-1

mg
1-n

.g
-1

.L
n

KIT-Al 8 % As(III) 80.77 0.06 0.989 0.54 0.91 0.988 
KIT-Al 8 % As(V) 31.49 30.59 0.954 18.48 0.28 0.797 
KIT-Fe 8 % As(III) 13.28 1.58 0.962 3.10 0.39 0.983 
KIT-Fe 8 % As(V) 6.52 2.97 0.989 2.30 0.28 0.942 

Table 5 Separation factor and adsorption capacity at 100 ppb using Langmuir model for As(III) and As(V) 

adsorption isotherms onto KIT-Fe 8 % and KIT-Al 8 %

Adsorbent Pollutant RL-0.1 qe-0.1 

mg.g
-1

KIT-Al 8 % As(III) 0.999 0.045 
KIT-Al 8 % As(V) 0.766 7.377 
KIT-Fe 8 % As(III) 0.984 0.206 
KIT-Fe 8 % As(V) 0.971 0.188 

Table 6 A comparison of the produced materials adsorption capacity with data from the literature. MAA 

(Mesoporous Activated Alumina), MS (Mesoporous Silica), OMA (Organised Mesoporous Alumina), ZVI (Zero 

Valent Iron), AC (Activated Carbon) 

Adsorbents As  qm in mg .g-1 
qe-0.1 in mg.g-

1 

Best fit 

isotherm  
Reference 

ppm As(III) As(V) As(III) As(V)   
CuO - MAA 0 - 1 2.16 2.02 0.11 0.14 Langmuir [45] 
Fe3+ and amino functioned 

MS 
0 - 200 142.60 101.74 0.16 0.94 Langmuir [46] 

Iron oxide coated sponge 0 - 5 3.85 4.50 0.33 0.29 Langmuir [47] 
Fe 10 % -MCM-41 0 - 10 - 26.25 - 0.72 Langmuir [18] 
Highly OMA 0 - 0.1 - - 5.00 19.80 Other [48] 
ZVI on AC 0 - 2 18.19 12.02 8.59 10.54 Langmuir [49] 
CeO2–ZrO2 nanospheres 0.5 - 60 74.13 133.50 16.49 57.70 Langmuir [50] 
KIT-Al 8 % 0 - 50 80.80 31.50 0.05 7.38 Langmuir This study 
KIT-Fe 8 % 0 - 50 13.30 30.60 0.21 0.19 Langmuir This study 
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Table 7 Kinetic models parameters for As(III) and As(V) removal onto Al/Fe oxides and Al/Fe coated OMS materials 

obtained at C0 ~ 50 ppm 

�
�

Pseudo-1
st

 order model� Pseudo-2
nd

 order model�

Arsenic� Adsorbents� qe� k1×102
� r2

� qe� k2×103
� r2

�

�
�

mg.g-1
� min-1

�

�

mg.g-1
� g.mg-1.min-1

�

�

As(III)�

Al� 6.75� 1.17� 0.917� 7.45� 2.10� 0.967�
KIT-Al 8 %� 9.65� 1.12� 0.914� 10.83� 1.30� 0.965�

SBA-Al 8 %� 1.82� 1.48� 0.913� 2.01� 9.50� 0.969�
Fe� 31.07� 4.03� 0.998� 32.98� 1.90� 0.980�

KIT-Fe 8 %� 9.33� 1.97� 0.815� 10.36� 2.50� 0.924�
SBA-Fe 8 %� 4.72� 3.87� 0.914� 5.02� 12.20� 0.973�

As(V)�

Al� 14.70� 1.96� 0.893� 16.19� 1.60� 0.950�
KIT-Al 8 %� 28.12� 7.67� 0.853� 29.88� 4.00� 0.945�

SBA-Al 8 %� 12.68� 23.50� 0.931� 13.22� 26.80� 0.974�
Fe� 28.70� 2.28� 0.975� 30.96� 1.00� 0.985�

KIT-Fe 8 %� 7.26� 13.30� 0.818� 7.75� 21.10� 0.910�
SBA-Fe 8 %� 8.53� 34.40� 0.919� 8.81� 63.90� 0.950�

Table 8 Intraparticle diffusion coefficients for As(III) and As(V) adsorption onto Al and Fe unorganised oxides and 

Al and Fe coated OMS materials 

� �
Intraparticle diffusion coefficients in mg.g

-1
.min

-0.5
�

Materials� Pollutant� ka1×10� ka2×10� ka3×10�

Al�

As(III)�

4.45� 2.65� 0.51�
KIT-Al 8 %� 6.98� 3.01� 0.77�
SBA-Al 8 %� 1.74� 0.56� 0.08�
Fe� 41.61� 6.38� 0.25�
KIT-Fe 8 %� 9.41� 2.67� 0.83�
SBA-Fe 8 %� 4.94� 0.79� 0.07�
Al�

As(V)�

16.64� 5.65� 1.24�
KIT-Al 8 %� 70.44� 12.23� 1.11�
SBA-Al 8 %� 41.63� 2.37� 0.22�
Fe� 26.94� 0.94� 1.35�
KIT-Fe 8 %� 20.57� 2.77� 0.50�
SBA-Fe 8 %� 32.52� 1.54� 0.33�

Table 9 Dubinin–Radushkevich isotherm parameters and adsorption energy associated to As removal by adsorption 

onto KIT-Fe 8 % and KIT-Al 8 %

Adsorbent� Pollutant� pHe� qs� kad×108� r2
� E�

� � �

mg.g
-1
� mol

2
.J

-2
�

�

J.mol
-1
�

KIT-Fe 8 %� As(III)� 8� 10.33� 263.00� 0.817� 435.81�
KIT-Fe 8 %� As(V)� 8� 5.60� 104.00� 0.903� 692.72�

KIT-Al 8 %� As(III)� 8� 12.73� 2380.00� 0.920� 144.95�
KIT-Al 8 %� As(V)� 8� 29.52� 4.75� 0.969� 3243.64�
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Highlights: 

� 3D and 2D Organised Mesoporous Silica were efficiently coated with Al to Fe oxides 

� 8 % metal oxide loading was the most appropriate content  for efficient As removal 

� Tailoring of adsorbent for As(III) or As(V) was achieved by varying Al to Fe ratio 

� Efficiency of tailored absorbent is highly pH and concentration dependent 

� No superior diffusion into organised materials over unorganised materials was shown 


