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Optimal pose selection for calibration of planar anthropomorphic manipulators
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a Ecole des Mines de Nantes, 4 rue Alfred-Kastler, Nantes 44307, France
b Institut de Recherche en Communications et Cybernétique de Nantes, UMR CNRS 6597, 1 rue de la Noë, 44321 Nantes, France
c Centre National de la Recherche Scientifique (CNRS), Paris, France

The paper is devoted to the calibration experiment design for serial anthropomorphic manipulators with
arbitrary number of links. It proposes simple rules for the selection of manipulator configurations that
allow the user to essentially improve calibration accuracy and reduce identification errors. Although
the main results have been obtained for the planar manipulators, they can be also useful for calibration
of more complicated mechanisms. The efficiency of the proposed approach is illustrated with several
examples that deal with typical planar manipulators and an anthropomorphic industrial robot.

1. Introduction

The standard engineering practice in industrial robotics
assumes that the closed-loop control technique is applied only
on the level of servo-drives, i.e. for actuating the manipulator
joints. In such systems, the Cartesian space control is based on
the open-loop method that incorporates numerous direct/inverse
kinematic transformations derived from the manipulator geomet-
ric model. These transformations define correspondence between
the manipulator joint coordinates and the Cartesian coordinates
of the end-effector. Hence, to achieve desired accuracy, manipula-
tor geometric model employed in the control algorithm should be
carefully tuned (calibrated) to take into account manufacturing tol-
erances and parameter variations from manipulator to manipulator
[1].

The problem of robot calibration has already been well stud-
ied and it has been in the focus of research community for many
years [2]. In general, the calibration process is divided into four
sequential steps [3]: modeling, measurements, identification and
compensation. The first step focuses on the design of the appro-
priate (complete but non-redundant [4]) mathematical model. At
the second step, related measurements (calibration experiments)
are carried out using commercially available or custom-made
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equipments [5,6]. The third step usually deals with the identifica-
tion of the Denavit–Hartenberg parameters [7], which may provoke
numerical instabilities for the manipulators with collinear succes-
sive axes considered in this paper. For this particular but very
common case, some authors (Hayati [8], Stone [9], and Zhuang [10])
proposed some modifications, but here we will use a more straight-
forward approach that is more efficient for the planar manipulators.
The last step is aimed at compensating identified parameter varia-
tions [11–13].

Among numerous publications devoted to the robot calibration,
there is a very limited number of works that directly addresses the
issue of the identification accuracy and reduction of the calibration
errors. In particular, Ikits and Hollerbach [14] used noise ampli-
fication index to estimate the errors in the identified parameters
of Puma 560 robot. Mirman and Gupta [15] proposed compensa-
tion algorithm using position-independent parameter error values.
In [16] the authors assessed backlash error for an ABB IRB 1600
6-dof serial industrial robot. Five different observability indexes
were compared in [17] and the authors detected that all of them
are related to each other. In [18] the determinant-based observ-
ability index was used to evaluate the performance of active robot
calibration algorithm applied to a 6-dof PUMA 560 robot. In further
comparison study, Hollerbach et al. [19] proposed to treat all cali-
bration methods as closed-loop ones and introduced the calibration
index that categorizes all calibration methods in terms of number of
equations per pose. Zhuang et al. [20] used the condition number of
the identification Jacobian to compare the identification accuracy
impact of different measurement configurations. In [21] the authors
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used iterative one-by-one pose search algorithm in order to min-
imize the influence of measurement noise on the identification of
geometrical parameters of a Gough-Stewart Platform.

It is clear that the calibration accuracy may be straightforwardly
improved by increasing the number of experiments (with the fac-
tor 1/

√
m, where m is the number of experiments [22]). Besides,

using diverse manipulator configurations for different experiments
looks also intuitively promising and perfectly corresponds to some
basic ideas of the classical theory of experiment design [19] that
intends to use experiments that are as much distinct as possible.
However, the classical results are mostly obtained for very specific
models (such as the linear regression) and cannot be applied here
directly due to the non-linearity of the relevant equations. There
are few research works in the literature that deal with the opti-
mal pose selection for robot calibration. For example, Borm and
Menq [23] have investigated the implications of different observ-
ability measures in the robot position error and influence of the
measurement configurations number on the final accuracy. They
concluded that the number of measurements is less important
than proper selection of measurement configurations. In [24] the
authors defined the set of optimal measurement configurations by
minimizing the condition number of the observation matrix. Daney
[25] used the constrained optimization algorithm based on the
minimization of the singular values root-product for optimal mea-
surement configurations selection for Gough platform calibration.
The noise amplification index was used in [26] to quantify mea-
surement configurations and to select the best one. In [27] authors
used D-optimality criteria to determine optimal measurement con-
figurations for planar anthropomorphic manipulators. Zhuang et al.
[28] applied simulating annealing to obtain optimal or near optimal
measurement configurations, which minimize at least one of two
considered performance measures. Imoto et al. [29] proposed to
use the end-effector position accuracy after calibration as a perfor-
mance measure in order to generate measurement configurations.
Similar idea was used in [30] where the authors introduced test
configurations related to the technological process, which allowed
them to define the performance measure as the positioning accu-
racy after calibration that is also related to the weighted trace of
the covariance matrix.

As follows from detailed analysis, all previous works in the
area of calibration experiment design provide user with an iter-
ative scheme that aims at minimizing an objective function that
depends on the singular values of the identification Jacobian (con-
dition number, for instance). However, this approach does not
consider directly the identification accuracy and may lead to
some unexpected results (where the condition number is perfect,
but the parameter estimation errors are rather high). Besides, it
requires very intensive and time consuming computations caused
by a poor convergence and high dimension of the search space
(number of calibration experiments multiplied by the manipulator
joint number). Hence, to apply this technique in industry, strong
mathematical background and good experience in the numerical
optimization are required. It is obvious that practical engineers
need some type of a “rule of thumb”, which allows them to select
measurement configurations without tedious computations.

In this paper, the problem of optimal design of the calibra-
tion experiments is studied for the case of a planar manipulator
with arbitrary number of links. Such manipulators do not cover all
architectures used in practice, but nevertheless this model allows
us to derive some very useful analytical expressions and to pro-
pose some simple practical rules defining optimal configurations
with respect to the calibration accuracy. In the following sections,
particular attention will be given to planar manipulators with 2
and 3 d.o.f. that are essential components of all existing anthro-
pomorphic robots. Practical significance of the obtained results
will be illustrated by a case study that deals with the calibration

experiment design for a 6-d.o.f. KUKA industrial robot, which is
presented as a set of simple planar sub-manipulators.

The remainder of this paper is organized as follows. Section
2 defines the research problem and contains basic assumptions.
Section 3 presents a motivation example that shows the impor-
tance of measurement pose selection in robot calibration. In Section
4, the identification algorithm is presented. Section 5 deals with
the evaluation of the identification accuracy. Section 6 contains
the main theoretical contributions that allow the user to gener-
ate desired measurement configurations without straightforward
numerical optimization, using proposed rule of thumb. Sections 7
and 8 illustrate advantages of the developed approach and contain
some simulation results. In Sections 9 and 10, the proposed tech-
nique is extended to the case of spatial manipulator and is applied to
a 6-dof serial industrial robot. Section 11 contains discussion where
weak and strong sides of the developed approach are considered.
Finally, Section 12 summarizes the main contributions of the paper.

2. Problem statement

Let us consider a general planar serial manipulator consisting of
n rigid links connected by the corresponding number of revolute
joints. For this manipulator, the end-effector position (x, y) can be
defined as follows:

x = l1cos q1 + l2cos (q1 + q2)+ · · · + ln cos (q1 + q2 + · · · + qn)

y = l1 sin q1 + l2sin (q1 + q2)+ · · · + ln sin (q1 + q2 + · · · + qn)
(1)

where l1, l2, . . ., ln are the link lengths, q1, q2, . . ., qn are the actu-
ated joint coordinates, n is the number of links. In practice, the
actual values of the link length li and the joint coordinates qi differ
from the nominal ones li

0 and q0
i

by some offsets �li and �qi to be
identified:

li = l0i +�li; qi = q0
i +�qi (2)

For further convenience, let us introduce the notations

�0
i =

i∑
k=1

q0
k; ��i =

i∑
k=1

�qk (3)

that allow us to rewrite (1) as

x =
(

l01 +�l1
)
· cos
(

�0
1 +��1

)
+ · · · +

(
l0n +�ln

)
· cos
(

�0
n +��n

)
y =
(

l01 +�l1
)
· sin
(

�0
1 +��1

)
+ · · · +

(
l0n +�ln

)
· sin
(

�0
n +��n

) (4)

Below, the system (4) will be used to generate the set of cal-
ibration equations where the offset variables {�li, i = 1, n} and
{��i, i = 1, n} are treated as unknowns.

To find the desired offsets, a number of experiments are carried
out providing a set of Cartesian coordinates

{
xk, yk

}
and corre-

sponding joint angles
{

qk
1, qk

2, . . ., qk
n

}
that theoretically satisfy the

system of Eq. (4). However, due to measurement errors, the number
of experiments should be excessive and the set of the calibration
equations cannot be satisfied simultaneously. Hence, the identifica-
tion procedure may be treated as the best fitting of the experimental
data by the geometrical model (2), i.e. by minimizing the corre-
sponding positional residuals.

To take into account the impact of the measurement noise, the
calibration equations derived from (4) can be written in the follow-
ing form:

xk =
n∑

i=1

(
l0i +�li

)
· cos
(

�0k
i +��k

i

)
+ εk

x

yk =
n∑

i=1

(
l0i +�li

)
· sin
(

�0k
i +��k

i

)
+ εk

y

(5)
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where k = 1, m, the subscript ‘i’ defines the manipulator joint/link
number, the superscript ‘k’ indicates the experiment number, the
superscript ‘0’ denotes the nominal values of the corresponding
variables, m is the total number of experiments. Besides, it is
assumed that the measurement errors

{
εk

x, εk
x

}
are independent

identically distributed random values (iid) with zero mean and the
standard deviation �. It should be noted that, for some techni-
cal reasons, the measurement errors in the joint variables qi are
neglected because of their small impact [31].

In the frame of this model, the desired offsets {�li, i = 1, n}
and {��i, i = 1, n} computed from the system (5) can be also
treated as random variables. Following the main ideas of the statis-
tical estimation theory, it is natural to assume that the mean values
of the obtained offsets are equal to their actual values (unbiased
estimate) and their standard deviations are as small as possible, i.e.

E
(

�l̂i

)
=�li; Var

(
�l̂i

)
→min; i = 1, n

E
(

�q̂i

)
=�qi; Var

(
�q̂i

)
→min; i = 1, n

(6)

where the hat symbol ‘̂’ denotes the estimates of the correspond-
ing parameters, E(.) and Var(.) are the expectation and variance,
respectively. This generally leads to a multiobjective optimization
problem whose solution highly depends on the selection of the
manipulator joint coordinates

{
qk

1, qk
2, . . ., qk

n

}
used in the calibra-

tion experiments. So, the main problem addressed in this paper is
to find the set of manipulator configurations (defined by the joint
coordinates) that insure the lowest dispersions of �l̂i and �q̂i or
certain compromise between them. To make these results attrac-
tive for the practicing engineers, the main attention will be paid to
the development of simple techniques (“rule of thumb”) allowing
us to generate the desired configurations without tedious compu-
tations, which are required while applying other existing methods
(which involve time consuming numerical optimization in multi-
dimensional space).

To develop the desired techniques, let us sequentially describe
the identification algorithm, evaluate the related identification
errors (via the covariance matrix) and develop some optimality
conditions (imposed on the joint variables) that guarantee a diag-
onal structure of the covariance matrix with the smallest elements
describing the parameter variances. The latter allows us to refor-
mulate the conventional optimality criteria used in the literature
and to present the final solution in a simple geometrical form.

3. Motivation example

To demonstrate importance of optimal measurement poses
selection in robot calibration, let us present first a simple moti-
vation example. For the purpose of simplicity, let us limit our study
to a 2-dof planar manipulator with two revolute actuated joints. For
this manipulator, the Cartesian coordinates x, y of the end-effector
can be computed as:

x = l1 · cos q1 + l2 · cos (q1 + q2)

y = l1 · sin q1 + l2 · sin (q1 + q2)
(7)

where l1, l2 are the link lengths, q1, q2 are the actuated joint coordi-
nates. It should be noted that usually real robot parameters l1, l2
and q1, q2 differ from their nominal values and this manipula-
tor has four geometrical parameters to be identified: (i) two link
length deviations �l1, �l2, and (ii) two joint encoder off-sets
�q1, �q2.

In order to show the significance of proper measurement con-
figurations selection, let us examine two plans of calibration
experiments:

Fig. 1. Positioning accuracy of 2-dof manipulator after calibration using different
plans of experiments (measurement noise � = 0.1 mm): plan (i) q1 = 30◦ , q2 =−100◦

and q1 =−150◦ , q2 =−90◦; plan (ii) q1 = 30◦ , q2 =−90◦ and q1 = 30◦ , q2 = 90◦ .

Plan (i)
{(

q1 = 30o, q2 − 100o
)

;
(

q1 = −150o, q2 − 90o
)}

Plan (ii)
{(

q1 = 30o, q2 − 90o
)

;
(

q1 = 30o, q2 = 90o
)}

The first plan has been selected intuitively, while the second one
has been generated using results obtained in this work. It should
be mentioned that for the considered manipulator each measure-
ment provides two Cartesian coordinates xi, yi. So, the minimum
number of measurement configurations is equal to two, it insures
the identifiability of all desired parameters �l1, �l2 and �q1, �q2.

Using these measurement configurations, simulation of calibra-
tion experiments has been done assuming that the measurement
noise is Gaussian with zero mean and dispersion � = 0.1 mm. Sim-
ulation results for l1 = 0.6 m, l2 = 0.4 m are summarized in Fig. 1,
where the root-mean-square errors � of the end-effector position
after calibration throughout the robot workspace are presented.
The figure clearly shows that, in the worst manipulator configu-
ration, the intuitive Plan (i) provides a positioning error equal to
2.29 mm while the proposed Plan (ii) reduces the worst positioning
error down to 0.14 mm, i.e. by a factor of 16.

Hence, this simple example clearly shows that selection of
measurement configurations is a very important issue in robot cal-
ibration. In fact, poorly chosen measurement configurations may
have the negative effect and reduce the robot accuracy after calibra-
tion. This motivates careful planning of the calibration experiments
in order to increase calibration efficiency, which is in the focus of
the paper. In the frame of this paper, the calibration efficiency refers
to the ability to reduce the impact of measurement errors on the
robot accuracy without increasing the number of experiments.

4. Identification algorithm

To find the desired parameters using the noise corrupted mea-
surements, the least square technique is usually applied. This
approach aims at minimizing the square sum of the residuals in
Eq. (5), which is the simplest way to minimize all residuals simul-
taneously. For the considered problem, the least square objective
can be written as:

m∑
k=1

(
n∑

i=1

(
l0i +�li

)
· cos
(

�0k
i +��i

)
− xk

)2

+
m∑

k=1

(
n∑

i=1

(
l0i +�li

)
· sin
(

�0k
i +��0

i

)
− yk

)2

→min (8)

3



where
{

xk , yk
}

and
{

�0k
1 , �0k

2 , . . ., �0k
n

}
denote, respectively, the

end-effector Cartesian coordinates and the manipulator joint
angles for the kth experiment, l0

i
is the nominal length of the ith

link, while �li and ��i are the offsets to be identified.
Since the unknown variables ��i, i = 1, n are incorporated in

the trigonometric functions, the optimization problem (8) cannot
be solved analytically. On the other hand, in practice the offsets �li,
��i are relatively small. For this reason, the geometrical model (4)
can be linearized with respect to the parameters to be identified
and presented in a convenient matrix form as

Pk = P0k + Jk ·�� (9)

where the vector �� =
(

��1, . . ., ��n, �l1, . . ., �ln
)T

aggre-

gates all unknown parameters, Pk = (xk , yk)
T

is the end-effector

position obtained from the kth experiment, P0k = (x0k , y0k)
T

is
the corresponding end-effector position computed using the nom-
inal values of the link lengths l0

i
, i = 1, n and given coordinates{

�0k
1 , �0k

2 , . . ., �0k
n

}
defining the manipulator configuration for the

kth experiment, i.e.

x0k =
n∑

i=1

l0i cos �0k
i ; y0k =

n∑
i=1

l0i sin �0k
i , k = 1, m, (10)

and Jk is the calibration Jacobian, which can be computed by dif-
ferentiating the system (4) with respect to ��. After relevant
computations the latter can be presented in the form

Jk =
[

Jk
x� Jk

xl

Jk
y� Jk

yl

]
2×2n

(11)

where

Jk
x� = −

[
l01sin �0k

1 . . . l0nsin �0k
n

]
1×n

Jk
xl =
[

cos �0k
1 . . . cos �0k

n

]
1×n

Jk
y� =
[

l01cos �0k
1 . . . l0ncos �0k

n

]
1×n

Jk
yl =
[

sin �0k
1 . . . sin �0k

n

]
1×n

(12)

Using the above notation and defining �Pk = Pk − P0k, the least-
square objective (8) can be rewritten as

m∑
k=1

(
Jk ·��−�Pk

)T (
Jk ·��−�Pk

)
→min (13)

which leads to an analytical solution

�� =
(

m∑
k=1

JkT
Jk

)−1

·
m∑

k=1

JkT
�Pk (14)

that will be further used for the accuracy analysis. It should be noted
that in the case of relatively large �li and ��i, the linearization pro-
cedure can be applied several times with iterative modifications of
the desired geometrical parameters and the configuration variables

l0i ← l0i +�li; �0k
i ← �0k

i +��i; ∀i, k (15)

This allows us to find a numerical solution of the original opti-
mization problem (8), which cannot be solved analytically.

It should be mentioned that there exist different versions of
the above algorithm in the literature, which differ in the type of
original measurement data (Cartesian coordinates, distance to the
reference point/line, end-effector orientation, etc.) and numeri-
cal optimization techniques (gradient search, simulated annealing,
genetic algorithms, etc.). Detailed reviews on these issues can be
found in [32–40]. In particular, Le et al. [32] grouped sensors to
produce 3D data and variety of geometric constraints that allowed
them to calibrate all parameters simultaneously. In [33], to increase
the accuracy of serial and parallel robots, the authors developed the

Robot Optimization System (ROSY) which uses a dedicated mea-
suring tool with two digital CCD cameras. An alternative geometric
parameter identification method that is based on a laser-ranger
attached to the end-effector was used in [34]. Kinematic calibration
based on differential techniques that uses measurement data from
structured laser module and stationary camera was used in [35] to
estimate parameters of 7-DOF humanoid manipulator arm. In [36],
the authors applied a backpropagation neural network to compen-
sate the joint errors of the neurosurgical robot system. Santolaria
et al. [37] utilized the ball bar gauge measurement device and iden-
tification technique whose objective function includes terms that
are regarding repeatability and measurement accuracy. To improve
the static positioning accuracy of the PA10-6CE robot, in [38] a 30-
parameter model incorporating elastostatic ones has been used.
The screw measurement method that utilizes laser tracker with
an active target and identification procedure that is based on circle
point analysis was used in [39] to identify the kinematic parameters
of an industrial robot. In [40], the authors presented a 12-parameter
error kinematic model for the three linear actuators of the Gantry-
Tau robot and used three types of measurement equipments (laser
interferometers, linear encoders and double-ball bars) to calibrate
the linear actuators.

It is also worth mentioning that in practice, there exist
non-negligible measurement noise, which is incorporated in
the variables �Pk indicating the difference between the actual
end-effector position (obtained from measurements) and those
computed by using the nominal geometrical model. Hence, for the
efficient calibration experiment planning, it is reasonable to eval-
uate the measurement noise impact on the desired manipulator
parameters.

5. Identification accuracy

To estimate the measurement noise impact on the identifica-
tion results, let us assume that the manipulator parameters differ
from the nominal ones by �

�
� and the measurements include

the additive random errors εk =
[
εk

x, εk
y

]T
(independent identically

distributed with zero mean and standard deviation �). This allows
us to present the measurement data as

Pk = P0k + Jk ·� �
�+ �k (16)

and, after substitution into (14), to express the identified values as

�� =�
�
�+

(
m∑

k=1

JkT
Jk

)−1

·
m∑

k=1

JkT
�k (17)

where the second term is the stochastic component in the model
parameter estimation.

As follows from this expression, the considered identification
algorithm provides the unbiased estimates

E (��) =�
�
� (18)

where E (.) denotes the mathematical expectation. Besides, the cor-
responding covariance matrix defining the identification accuracy,
can be expressed as

cov(��) =

(
m∑

k=1

JkT
Jk

)−1

E

(
m∑

k=1

JkT
�k ·

m∑
k=1

�kT
Jk

)(
m∑

k=1

JkT
Jk

)−1

(19)

Further, taking into account the statistical properties of the mea-
surement errors (see assumption at the beginning of this section)

E
(

εkεjT
)
=
{

02×2, k /= j

�2I2×2, k = j
(20)
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the desired covariance matrix (19) can be presented as

cov (��) = �2

(
m∑

k=1

JkT
Jk

)−1

(21)

Therefore, the impact of the measurement errors (i.e. the “qual-
ity” of the selected measurement configurations

{
qk

1, qk
2, . . ., qk

n

}
)

is completely defined by the matrix sum
∑m

k=1JkT
Jk, which is con-

structed from the identification Jacobians.

6. Improvement of the identification accuracy via design of
calibration experiments

To analyze the above derived matrix (21) in detail, let us take
into account that the manipulator model (4) includes two types of
identified parameters (�li and ��i). So, the sum

∑m
k=1JkT

Jk can be
presented in the block-wise form as

m∑
k=1

JkT
Jk =
[

LT C L LT S

ST L C

]
(22)

where L = diag(l01, l02, . . ., l0n), while the matrices C, S depend on the
measurement configurations in the following way:

C =

[
m∑

k=1

cos
(

�k
i
− �k

j

)]
i = 1, n

j = 1, n

; S =

[
m∑

k=1

sin
(

�k
i
− �k

j

)]
i = 1, n

j = 1, n

(23)

where �k
i
=
∑i

s=1qk
s . It should be mentioned that the diagonal terms

of the sub-matrices C, S can be computed straightforwardly

cii = m; sii = 0; ∀i = 1, n. (24)

and do not depend on the measurement configurations. However,
the off-diagonal elements highly depend on the selection of the
relevant joint angles

{
qk

1, qk
2, . . ., qk

n

}
.

It is clear that, using terminology from the classical design of
experiments, the sum

∑m
k=1JkT

Jk can be treated as the “information
matrix,” which may be optimized using several different criteria
[22]. The most common ones are so-called A- and D-optimality crite-
ria, which allow us to maximize the matrix trace and determinant,
respectively. However, the first criterion cannot be applied to the
considered problem because the trace of the information matrix
(22) does not depend on the design variables

{
qk

1, qk
2, . . ., qk

n

}
that

define the plan of the calibration experiment. In fact, as follows
from expressions (22)–(24), here the trace is constant and is equal
to

trace

(
m∑

k=1

JkT
Jk

)
= m× n+m

n∑
i=1

(
l0i
)2

(25)

Besides, this trace is composed of the elements of different units,
which is not acceptable from an engineering view point.

In contrast, the second criterion leads to the optimization prob-
lem that produces reasonable and practically acceptable solutions.
In this case, using the block-wise formulas of Schur [41], the desired
determinant can be expressed as

det

(
m∑

k=1

JkT
Jk

)
= (det L)2 · det

(
C · CT − S · ST

)
(26)

where det (L) = const. As follows from the relevant analysis (see
Appendix A), the latter expression reaches its maximum value
when all elements of the matrix S are equal to zero. This allows
us to reformulate the considered problem in the following way{

qk
1, qk

2, . . ., qk
n|k = 1, m

}
= argmax

q

{
det C

}
(27)

subject to the equality constraint S = 0. It should be noted that
det C > 0 here.

Summarizing these results (see Appendix A for details), the opti-
mality conditions of the desired calibration plan can be written as
the set of n (n− 1) trigonometric equations

m∑
k=1

cos

(∑i

s=1
qk

s −
∑j

s=1
qk

s

)
= 0, ∀ i > j

m∑
k=1

sin

(∑i

s=1
qk

s −
∑j

s=1
qk

s

)
= 0, ∀ i > j

. (28)

in m · (n− 1) variables
{

qk
2, . . ., qk

n|k = 1, m
}

, where i = 1, n and

j = i+ 1, n. It is worth mentioning that the joint variables qk
1 do

not appear in Eq. (28), so the calibrations plans are invariant with
respect to the coordinates of the first joint. If those optimality con-
ditions are satisfied, the information matrix will be strictly diagonal
since S = 0 and C = m I

m∑
k=1

JkT
Jk = m

[
L2 0

0 I

]
(29)

and, as follows from (21), it ensures the minimum values of the
variances Var (�li) and Var

(
��i

)
.

Hence, to find the desired set of optimal measurement config-
urations, it is necessary to solve the underdetermined system of
trigonometric Eq. (28), where the number of variables m · (n− 1) is
higher than the number of equations n (n− 1). As a matter fact, m is
usually greater than n because the original identification problem
(see Section 3) deals with estimation of 2n parameters

{
�li, ��i

}
using 2m Eq. (4). So, the minimum number of experiments m ensur-
ing the parameters identifiability is equal to n. However, in practice
m > n, because it allows reducing the measurement noise impact.

It can be easily proved that the underdetermined system of
trigonometric Eq. (28) has an infinite number of solutions. For
instance, even in the case of n = 2 and unreasonably small num-
ber of measurements m = 2, the complete set of solutions can be
expressed as

q1
1 = ˛1; q1

2 = ˇ

q2
1 = ˛2; q2

2 = ˇ + �
(30)

where ˛1, ˛2, ˇ are arbitrary angles within the manipulator joint
limits. In more realistic case, when n = 2 and m = 3, the desired set
of solutions

q1
1 = ˛1; q1

2 = ˇ

q2
1 = ˛2; q2

2 = ˇ + 2�

3

q3
1 = ˛3; q3

2 = ˇ − 2�

3

(31)

is defined via four arbitrary angles ˛1, ˛2, ˛3, ˇ. More details con-
cerning the solutions of the considered system for different values
of m and n are presented in Table 1.

It is worth mentioning that in practice, instead of generating
the complete set of solutions of the system (28), it is enough to
find an appropriate partial one (since all of them are equivalent
with respect to the identification accuracy and provide the same
covariance matrix). To find this solution, it useful to take advantage
of the additive structure of the equations defining the optimality
conditions for the measurement plans (see Table 1). In fact, these
equations can be easily separated into several independent groups
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∑ m k=

1
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s
qk 2
=

0;
∑ m k=

1
si

n
qk 2
=

0,

3-
Li

n
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m
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u
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r
∑ m k=

1
co

s
qk 2
=

0;
∑ m k=

1
si

n
qk 2
=

0;
∑ m k=

1
co

s
qk 3
=

0;
∑ m k=

1
si

n
qk 3
=

0;
∑ m k=

1
co

s
( qk 2
+

qk 3

) =0;
∑ m k=

1
si

n
( qk 2
+

qk 3

) =0
4-

Li
n

ks
m

an
ip

u
la

to
r

∑ m k=
1
co

s
qk 2
=

0;
∑ m k=

1
si

n
qk 2
=

0;
∑ m k=

1
co

s
qk 3
=

0;
∑ m k=

1
si

n
qk 3
=

0;
∑ m k=

1
co

s
( qk 2
+

qk 3

) =0;
∑ m k=

1
si

n
( qk 2
+

qk 3

) =0
∑ m k=

1
co

s
qk 4
=

0;
∑ m k=

1
si

n
qk 4
=

0;
∑ m k=

1
co

s
( qk 3
+

qk 4

) =0;
∑ m k=

1
si

n
( qk 3
+

qk 4

) =0;
∑ m k=

1
co

s
( qk 2
+

qk 3
+

qk 4

) =0;
∑ m k=

1
si

n
( qk 2
+

qk 3
+

qk 4

) =0

comprising non-identical variables. For instance, in the simplest
case n = 2, the optimality conditions

m∑
k=1

cos qk
2 = 0;

m∑
k=1

sin qk
2 = 0 (32)

can be rewritten as

m1∑
k=1

cos qk
2 +

m∑
k=m1+1

cos qk
2 = 0

m1∑
k=1

sin qk
2 +

m∑
k=m1+1

sin qk
2 = 0

(33)

and replaced by stronger conditions

m1∑
k=1

cos qk
2 = 0;

m∑
k=m1+1

cos qk
2 = 0

m1∑
k=1

sin qk
2 = 0;

m∑
k=m1+1

sin qk
2 = 0

(34)

which is obviously sufficient but not necessary with respect to (32).
Nevertheless, the desired information matrix (29) is achieved and
the identification accuracy does not suffer from this intuitive sim-
plification. It is clear that similar approach can be also applied in
general case (for n≥2).

The above presented idea allows us to propose a heuristic
approach for obtaining partial solutions of (28) for any given m
using general solutions for the problems of lower dimensions.
Below, this techniques will be referred to as the “superposition of
low-dimensional plans”. In practice, the most attractive and suffi-
cient (for our problem) is the decomposition of the sums (28) into
several sub-sums of size m1 = 2 and m2 = 3, which is equivalent to
the presentation of experiment number m in the following form

m = 2k1 + 3k2 (35)

where k1, k2 are some integers. It is obvious that the partitioning
(35) is not unique (and exists if m≥2), but any of possible presen-
tations is suitable here. For example, for n = 2 the desired solution
can be easily composed of k1 measurement configurations of the
type (30) and k2 configurations of the type (31). Besides, in some
cases it is possible to compose optimal plans using one type of con-
figurations only: either type (30) (i.e. k2 = 0 and k1 = m/2) or type
(31) (i.e. k1 = 0 and k2 = m/3). In the case when m is a multiple of
6, both mentioned plans of experiments can be used. For instance,
for m = 6 the plans 2× 3 and 3× 2 are acceptable.

To evaluate visually the diversity of the obtained measurement
configurations, Table 2 contains several case studies corresponding
to 2-, 3- and 4-link manipulators. As follows from them, the optimal
configurations differ essentially from each other, in order to ensure
both parameters identifiability and low identification errors. This
perfectly suits the basic ideas of the design of experiment theory.

In general, the proposed approach can be treated as a sim-
ple rule of thumb allowing to generate easily optimal poses for
calibration of planar anthropomorphic manipulators. Applying
this rule, it is possible to obtain the measurement configurations
that provide the following covariance matrix for the parame-
ters of interest

{
�li, ��i|i = 1, n

}
(as well as for the parameters{

�li, �qi|i = 1, n
}

)

cov (��) = �2

m
·
[
·L−2 0

0 I

]
(36)
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Table 2
Optimal measurement configurations for typical planar manipulators.

which allows to estimate the identification accuracy via the vari-
ances

Var (�qi) =
�2

m · l2
i

; Var (�li) =
�2

m
(37)

where � is the s.t.d. of the measurement noise and i = 1, n. These
results show that, if the optimal calibration plan is used, the iden-
tification errors for the linear parameters �li will depend on the
number of experiments only, while the errors for the angular
parameter �qi will also depend on the link lengths. In more details,
the results related to the identification accuracy are presented in
Table 3.

Hence, using the proposed rule of thumb one can easily gen-
erate the desired measurement configurations corresponding to
the D-optimality criteria, which yields essential reduction of the
identification errors. It is proved that, from the algebraic point of
view, these configurations satisfy the optimality conditions, which
require relevant sums of sin(.) and cos(.) of the joint coordinates to
be equal to zero. Using geometrical approach, this rule can be rep-
resented on the unit circle, where the sum of corresponding unit
vectors must be zero. The latter allows user to find the desired con-
figurations easily. The advantages of this approach are illustrated
in the following Sections.

7. Simulation study

To demonstrate the efficiency of the proposed technique, let us
present some simulation results that deal with two-, three- and

four-links manipulators and employ different calibration plans.
The first plan (a conventional one) is based on the regular grid
in the joint coordinate space. The second calibration plan imple-
ments the proposed strategy, which is described in detail in Section
6. The simulation study has been carried out for different num-
ber of experiments (m = 4. . .20); it was assumed that the s.t.d. of
the measurement errors is equal to � = 0.1 mm. To obtain reli-
able results, the simulations have been repeated 10,000 times and
averaged.

The manipulator parameters used for the simulations are pre-
sented in Table 4. It was assumed that the link lengths are in
the range of 100. . .260 mm, while the geometric errors in the
link lengths may be from 0.4 to 1.5 mm and the joint off-sets are
0.3. . .0.7◦. This table also contains the summary of the simulation
results for 4 and 20 calibration experiments, which are in good
agreement with expressions (37).

To show benefits of the proposed calibration plans, Fig. 1 con-
tains more detailed results corresponding to the conventional and
proposed approaches (for the case of 4-links planar manipulator).
As follows from them, the optimal pose selection for the calibra-
tion experiments allows us to reduce the identification errors by a
factor of 1.5–2. For instance, for the number of calibration experi-
ments m = 10 the proposed technique allows us to obtain the s.t.d. of
the identification accuracy 0.032 mm for the parameters L1, . . ., L4
and from 0.007◦ to 0.016◦ for the parameters q1, . . ., q4. In con-
trast, for the conventional technique, corresponding values are
0.045. . .0.060 mm and 0.010◦. . .0.027◦, respectively. Thus, a simple
and practically convenient “rule of thumb” developed in this paper

7



Table 3
Identification accuracy for manipulator geometric parameters.

Manipulator
∑m

k=1
JkT

Jk Identification accuracy

2-Links manipulator diag (m · l12, m · l22, m, m), �q1 = �√
m×l1

; �q2 = �√
m×l2

; �L1 = �√
m

; �L2 = �√
m

3-Links manipulator diag(m · l12, m · l22,
m · l32, m, m, m)

�q1 = �√
m×l1

; �q2 = �√
m×l2

; �q3 = �√
m×l3

; �L1 = �√
m

; �L2 = �√
m

; �L3 = �√
m

4-Links manipulator diag (m · l12, m · l22, m · l32,
m · l42, m, m, m, m)

�q1 =
�√

m× l1
; �q2 =

�√
m× l2

; �q3 =
�√

m× l3
; �q4 =

�√
m× l4

;

�L1 =
�√
m

; �L2 =
�√
m

; �L3 =
�√
m

; �L4 =
�√
m

Table 4
Identification accuracy for manipulator geometric parameters: simulation study (� = 0.1 mm).

Manipulator Model parameters Identification accuracy for optimal plans

4 Calibration experiments 20 Calibration experiments

2-Links manipulator
L1 = 260 mm, �L1 = 1.5 mm, �q1 = 0.5o

L2 = 180 mm, �L2 = −0.6 mm, �q2 = −0.5o
�L1 = 0.050 mm, �q1 = 0.011o

�L2 = 0.050 mm, �q2 = 0.016o
�L1 = 0.022 mm, �q1 = 0.005o

�L2 = 0.022 mm, �q2 = 0.007o

3-Links manipulator
L1 = 260 mm, �L1 = 1.5 mm, �q1 = 0.5o

L2 = 180 mm, �L2 = −0.6 mm, �q2 = −0.5o

L3 = 120 mm, �L3 = −0.4 mm, �q3 = 0.7o

�L1 = 0.050 mm, �q1 = 0.011o

�L2 = 0.050 mm, �q2 = 0.016o

�L3 = 0.050 mm �q3 = 0.024o

�L1 = 0.022 mm, �q1 = 0.005o

�L2 = 0.022 mm, �q2 = 0.007o

�L3 = 0.022 mm �q3 = 0.011o

4-Links manipulator

L1 = 260 mm, �L1 = 1.5 mm, �q1 = 0.5o

L2 = 180 mm, �L2 = −0.6 mm, �q2 = −0.5o

L3 = 120 mm, �L3 = −0.4 mm, �q3 = 0.7o

L4 = 100 mm, �L4 = 0.7 mm, �q4 = −0.3o

�L1 = 0.050 mm, �q1 = 0.011o

�L2 = 0.050 mm, �q2 = 0.016o

�L3 = 0.050 mm �q3 = 0.024o

�L4 = 0.050 mm �q4 = 0.029o

�L1 = 0.022 mm, �q1 = 0.005o

�L2 = 0.022 mm, �q2 = 0.007o

�L3 = 0.022 mm, �q3 = 0.011o

�L4 = 0.022 mm, �q4 = 0.013o

has obvious advantages and is very attractive from an engineering
and practical view point.

8. Comparison analysis

To illustrate the advantages of the developed technique, let us
consider an example of 3-link manipulator whose variations in joint
coordinates are limited to the range of ±100◦. These limitations
are quite common for industrial robots. The considered manipula-
tor includes three linear and three angular geometrical parameters
that should be identified by means of calibration. For comparison
purposes three different plans of experiments are considered:

(i) regular plan within the joint limits;
(ii) random plan within the joint limits; and

(iii) plan of experiments that satisfies optimality conditions (28)
and takes into account the joint limits.

It should be noted that the approach for optimal measurement
configurations selection proposed in [23], which also insures con-
ditions (28), is not applicable here, since joint limits do not allow
us to generate regular plan of experiments within the whole joint
space, i.e. ±180◦ for each variable (Fig. 2).

For all plans of experiments, the same number of measurements
m = 64 has been used (this value has been chosen to have four dif-
ferent angles q1, q2 and q3 for the case of regular plan). In the plans
(i) and (ii), all measurement configurations are different, while
in plan (iii) the measurements have been repeated 16 times for
4 optimal configurations. The link lengths have been assigned to
1.25 m, 1.10 m and 0.23 m (those values corresponds to the link
lengths of Kuka industrial robot used in experimental study), the
measurements noise parameter was � = 0.1 mm. The identifica-
tion accuracy of three examined plans of experiments is presented
in Table 5. The results show that the proposed plan of calibration
experiments allows us to increase essentially the parameters iden-
tification accuracy with respect to the random and regular plans
(from 20% to 60%). Corresponding improvement of the robot posi-
tioning accuracy is presented in Fig. 3, which contains three plots
showing scattering of the end-effector location after calibration
due to random nature of the measurement errors in the following

Table 5
Comparison of parameters identification accuracy for different calibration plans.

Parameters Identification accuracy

Random plan Regular plan Optimal plan

��1 (mrad) 0.012 0.012 0.010
��2 (mrad) 0.017 0.016 0.011
��3 (mrad) 0.075 0.067 0.054
�L1 (mm) 0.015 0.015 0.013
�L2 (mm) 0.019 0.018 0.013
�L3 (mm) 0.017 0.015 0.013

configuration q1 = 0◦, q2 = −90o and q3 = 90o. The value � in Fig. 3
denotes the dispersion of the end-effector errors computed using
particular randomly generated data.

An additional study has been performed for the density of
points in the regular plan. The same calibration experiments has
been performed with 2, 4, 8, 16 and 25 regular spaced points per
joint. For each case, the improvement factor has been computed,
which shows the benefits of increasing the number of measure-
ment configurations on the parameters identification accuracy.
For comparison purposes, the expected improvement factors have
been also computed, which corresponds to repeating experiments
in the same configurations several times. Simulation results are
summarized in Table 6, they show that increasing the number
of configurations up to 16,256 does not allow us to increase
the identification accuracy more than by 2% comparing with the
repeating experiments in 64 reference configurations. This con-
firms that points density augmentation in the regular plan does
not leads to appreciable efficiency improvement, the main accu-
racy improvement is achieved here due to increasing the number
of measurements.

Hence, this example shows that by using limited number of
optimal measurement configurations and repeating experiments
several times, it is possible to achieve better accuracy than using
huge number of configurations distributed within the joint limits.
So, the proposed approach speeds up the calibration process with-
out loosing the identification accuracy, i.e. improves its efficiency.

Let us also show the benefits of the proposed approach for the
measurement configuration selection compared to the techniques
based on the conventional observability indices [17]. It was shown

8



Fig. 2. Comparison of the identification accuracy for different calibrations plans (case of 4-links planar manipulator): -̈–äre analytical curves corresponding to the proposed
optimal plan (expressions (36)); “x” are experimental results corresponding to the optimal calibration plan (simulation); “o” are experimental results corresponding to the
calibration plan with regular grid (simulation).

Fig. 3. Geometrical error compensation efficiency for different calibration plans of experiments (3-dof planar manipulator, identification of six geometrical parameters, 64
measurement configurations, measurement noise parameter � = 0.1 mm, manipulator configuration q1 = 0◦ , q2 =−90◦ , q3 = 90◦).

before [42] that all these indices give similar results in terms of
identification accuracy. Here, the comparison analysis is done using
the same example of the 3-link planar manipulator with the joint
limits ±100◦. For each performance measures O1–O5, four mea-
surement configurations have been found, which are optimal in
terms of the corresponding observability index. It should be men-
tioned that to generate optimal configurations using conventional
techniques, each case requires solution of non-trivial optimiza-
tion problem with 12 variables (4 measurement configurations).
The obtained optimal configurations are presented schematically

in Fig. 4. As follows from it, the obtained solutions are distributed
in the robot workspace and differ from one case to another. It should
be mentioned that all sets of measurement configurations ensure
the same parameters identification accuracy that is equal to the
accuracy of the developed technique (see optimal plan in Table 5).
Moreover, the values of the observability indices are equal for all
obtained plans of experiments (Table 7). Another important conclu-
sion is that for the considered manipulator the positioning accuracy
after calibration (using optimal measurement configurations) does
not vary essentially within the robot workspace (see Table 7), the

Table 6
Improvement of parameter identification accuracy due to increasing the measurement configuration density for regular plan.

Number of regular spaced points per joint

2 4* 8 16 25

Total number of configurations 8 64 512 4096 15,625

Parameters Improvement factors

��1 0.33 1 2.86 8.12 15.9
��2 0.32 1 2.88 8.18 16.0
��3 0.33 1 2.86 8.12 15.9
�L1 0.33 1 2.86 8.12 15.9
�L2 0.32 1 2.88 8.18 16.0
�L3 0.33 1 2.86 8.12 15.9
Expected 0.35 1 2.83 8.00 15.6

* This case have been chosen as a reference one.
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Fig. 4. Schematic presentation of optimal measurement configurations for 3-link planar manipulator obtained using the developed technique and conventional observability
indices.

difference between maximal and root mean square errors is lower
than 0.1%. Hence, the developed technique gives also good results
comparing with the test-pose approach proposed in [43], but its
obvious advantage is extra-simplicity (it does not require applica-
tion any numerical optimization routine).

To make graphical presentation more clear, it is useful to take
into account that the angle q1 does not effect on the identification
accuracy. So, in optimal plan of experiments, q1 can be fixed to any
arbitrary value. Hence, in order to make comparison analysis eas-
ier, it is reasonable to fix the angle q1 to the same constant value in
all obtained plans of experiments (q1 = 0, for instance). After such
modifications, the obtained optimal configurations become semi-
symmetrical (Fig. 5). Besides, in all cases (O1–O5) the measurement
configurations satisfy the proposed optimality conditions (28), i.e.
all plans of experiments are optimal in terms of the developed rule.
However, in contrast to the cases O1–O5, the developed technique
allows us to generate optimal measurement configurations without
solving optimization problem. This advantage becomes extremely

important with increasing of the number of actuated joints and
the number of measurement configurations. In particular, for a
6-dof manipulator and 20 measurement configurations, conven-
tional techniques require solution of an optimization problem with
120 unknowns. This high-dimensional problem is very time con-
suming and no one can guaranty that the obtained solution the
global optimum. In contrast, the developed technique allows user
to get the optimum without solving the optimization problem.

9. Extension to the 3D case

In spite of numerous advantages, the proposed approach has
essential limitations. They are related to the manipulator archi-
tecture, for which the optimality conditions are formulated and
strictly proved. In fact, the manipulator topology described by Eq.
(2) includes 2D serial planar mechanisms with revolute joints only.
Although generalization for the case of prismatic joints is trivial,

Table 7
Performances measures for measurement configurations generated using different optimality criteria.

Performance
measures

O1 :
r
√

�1 ·...·�r√
r

→max O2 : �r
�1
→max O3 : �r →max O4 :

�2
r

�1
→max O5 :

(
1

�1
+ · · · + 1

�r

)−1
→max Developed

technique

O1 0.67 0.67 0.67 0.67 0.67 0.67
O2 0.18 0.18 0.18 0.18 0.18 0.18
O3 0.46 0.46 0.46 0.46 0.46 0.46
O4 0.08 0.08 0.08 0.08 0.08 0.08
O5 0.22 0.22 0.22 0.22 0.22 0.22

Positioning
error
(max/�)

1.22 1.22 1.22 1.22 1.22 1.22

Positioning
error
(RMS/�)

1.22 1.22 1.22 1.22 1.22 1.22
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Fig. 5. Schematic presentation of modified optimal measurement configurations for a 3-link planar manipulator obtained using the developed technique and conventional
observability indices (with q1 = 0).

extension to the 3D case is non obvious and requires additional
efforts.

The simplest way to extend the proposed “rule of thumb” to the
3D case is to apply the following procedure:

Step (a): decompose the spatial manipulator into a set of planar
serial sub-chains;
Step (b): apply the developed rule to each sub-chain separately,
without assigning certain values to the joint coordinates that can
be selected arbitrary;
Step (c): aggregate the obtained sub-chain joint coordinates in
order to find configurations of the entire manipulator (where some
values are still arbitrary);
Step (d): apply the developed rule to the each set of the arbitrary
coordinates, i.e. ensuring that the sums of sines and cosines are
equal to zero for all of them.

To show the efficiency of this heuristic extension, let us consider
several typical manipulator architectures used in industry:

(i) 3-Axis SCARA robot with 2 revolute and one prismatic joints
(RzRzPz architecture). For this architecture, the rule of thumb
can be applied straightforwardly since motions in the xy-plane
and in z-direction are not coupled. This manipulator can be
easily decomposed in two sub-chains corresponding to 2-link
planar RzRz manipulator and 1-axis prismatic Pz mechanism.
For the first one, the optimal solution is provided by Eq. (28).
For the second one, the optimal solution is trivial and is defined
by the classical design of experiment theory [22].

(ii) 4-Axis SCARA robot with 3 revolute and one prismatic
joints (RzRzPzRz architecture). Taking into account that this
architecture is nominally equivalent to RzRzRzPz one, here
decomposition leads to RzRzRz and Pz mechanisms. So, the

optimal solutions are obtained in similar way: using results
for 3-link planar manipulator and 1-axis prismatic mechanism.

(iii) 2-Axis articulated robot with two revolute joints (RzRy architec-
ture). In this case, decomposition yields two trivial sub-chains
of Rz and Ry types. As follows from (28), at the beginning of each
separate sub-chain, the joint coordinates can be set arbitrary.
However, applying Step (d) of the above presented procedure
to the joint Ry, one can get values of the corresponding joint
coordinates ensuring zero sums of the sines and cosines. It can
be easily verified that the latter operation yields a diagonal
information matrix (without applying Step (d) to the first joint
Rz).

(iv) 3-Axis articulated robot with three revolute joints (RzRyRy archi-
tecture). Here, decomposition leads to a trivial sub-chain Rz

and a 2-link planar manipulator RyRy. They are treated in the
same way as the above presented RzRy case, allowing the first
joint Rz to be set arbitrary. Similarly, obtained measurement
configurations ensure diagonal structure of the information
matrix.

Optimal measurement configurations for the above considers
spatial manipulators are presented in Table 8, which also contains
corresponding information matrices that are strictly diagonal. They
give certain compromise between the identification accuracy of dif-
ferent manipulator parameters that is acceptable from a practical
point of view, but obviously is not unique.

Hence, extension of the rule of thumb to the 3D case is rather
simple, while it has been derived intuitively, using some heuristic
ideas. Nevertheless, dedicated studies confirm that the results are
quite good but perhaps not optimal with respect to some parame-
ters. Therefore, the general (and strict) solution of the problem for
the 3D-case is still an open question, which will be in the focus of
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Table 8
Optimal measurement configurations for typical spatial manipulators.

further research. The virtue of these results in the case of 6-axis
manipulator is shown in the next section.

10. Application example

Now let us apply the obtained results to the calibration
of the 6 d.o.f. Kuka KR-270 industrial robot (Fig. 5), which
obviously is not a planar manipulator studied in previous sec-
tions. However, it is attractive to try the proposed rule of
thumb (see Section 9) heuristically, considering this spatial
manipulator as set of planar kinematic sub-chains. In partic-
ular, it is natural to decompose the manipulator into planar
sub-chains composed from the following joints and correspond-
ing links: {joint no. 1}, {joints no.2, 3, 5} and {joints no.4,
6}. Using this decomposition and taking into account the joint
limits of industrial robot KR-270, it is possible to generate

four measurement configurations (Table 8) allowing us to
identify nine desired parameters: the link length deviations
�l1, . . ., �l3 and the joint offsets �q1, . . ., �q6. The validity of
these configurations for the entire 6-axes manipulator can be
easily verified by evaluating the rank of the corresponding cali-
bration Jacobian.

To obtain the desired identification accuracy (0.005 mm for
�li and 0.01 deg for �qi), the calibration experiments for each
measurement configuration should be repeated several times. Tak-
ing into account that conventional measurement systems used in
industrial environment (laser trackers) provide the accuracy cor-
responding to the measurement noise parameter � ≈ 0.03 mm,
one can get the minimum number of calibration experiments (see
Table 3) that in this case is mmin = 40. It means that the calibra-
tion experiments should be repeated 10 times for all configurations
presented in Table 8.
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Table 9
Optimal measurement configurations for calibration of industrial robot KUKA KR-270.

Joint coordinate Configuration no. 1 Configuration no. 2 Configuration no. 3 Configuration no. 4

q1 –90◦ 0◦ 90◦ 180◦

q2 –30◦ –60◦ –90◦ –120◦

q3 90◦ –90◦ –90◦ 90◦

q4 0◦ 180◦ 90◦ –90◦

q5 120◦ –120◦ –60◦ 60◦

q6 –120◦ 120◦ 60◦ –60◦

To show the efficiency of the proposed heuristic approach,
Table 9 presents the identification accuracy for two sets of mea-
surement configurations (calibration plans). The first one, Plan no.
1, corresponds to the regular distribution of the joint coordinates
that is usually used in practice [44]. The second one, Plan no. 2, uses
the measurement configurations (see Table 8) generated using the
proposed rule of thumb. As follows from the obtained results, the
proposed technique allowed us to improve the calibration accuracy
by a factor of 1.7–4.2. The latter confirms usefulness of this heuristic
idea: application of the results obtained for a planar case to spatial
manipulators.

In more details, the advantages of the Plan no. 2 are con-
firmed by the following values. For the linear parameters, the
regular plan ensures the identification accuracy 0.010. . .0.021
mm, while the proposed one allows us to reduce the identi-
fication errors to 0.005. . .0.006 mm. Similarly, for the angular
parameters, application of the proposed technique leads to the
reduction of the identification errors from 0.019. . .0.100 mrad to
0.008. . .0.050 mrad. Those results are also illustrated in Fig. 5,
which presents stochastic simulation of the calibration experi-
ments corresponding to two sets of measurement configurations.
Corresponding graphs clearly show that the proposed technique
provides unbiased estimates of the desired parameters and allows
essentially reducing deviations of the identification errors. Hence,
summarizing this Section, one may conclude that the devel-
oped approach, initially targeted to the planar manipulators, can
be also efficiently applied to the spatial manipulators (using
some heuristic decomposition of the corresponding kinematic
chain).

11. Discussion

The main advantage of the results presented in this paper
is related to essential reduction of computational efforts required
for generation of optimal measurement configurations, which
are used for geometrical calibration of robotic manipulators. In
fact, instead of tedious numerical optimization, simple rules can
be applied that yield the set of joint angles satisfying certain
trigonometric equations (based on the sums of sines and cosines
of the joint coordinates and their combinations, see Table 1).
It is proved that, in the planar case, this solution ensures the
minimization of the determinant of the covariance matrix (D-
criterion), which is often used for the calibration experiments

Table 10
Identification accuracy for the regular (no. 1) and proposed (no. 2) plans of calibra-
tion experiments.

Parameter Identification accuracy Improvement factor

Plan no. 1 Plan no. 2

�l1 [mm] 0.015 0.005 3.0
�l2 [mm] 0.021 0.005 4.2
�l3 [mm] 0.010 0.006 1.7
�q2 [mrad] 0.021 0.008 2.6
�q3 [mrad] 0.019 0.009 2.1
�q5 [mrad] 0.100 0.050 2.0

planning. However, in the general case (for spatial manipula-
tors), this statement is not valid anymore, while providing quite
good solution completely acceptable in practice. The latter justi-
fies the results utility for wider class of manipulator architectures
(Table 10).

Another important question, which is beyond the scope of this
paper, is related to the selection of the optimization criteria used
for the evaluation of the measurement configurations “quality”.
Here, the main idea came from the analysis of the information
matrix that should be strictly diagonal (which corresponds to the
maximum of its determinant). It is clear that other existing opti-
mization criteria [20–27] can be also used, but there is no guarantee
that they can produce similar rule of thumb or corresponding
solutions are better from engineering view point. Some details
concerning comparison of different optimization criteria in cali-
bration experiment planning can be found in our previous work
[30].

It should be noted that despite the fact that the original prob-
lem was formulated without paying attention to the joint limits, the
obtained results can be also efficiently applied if the joint limits are
wider than 180o. Application of the proposed rule of thumb for this
case has been presented in Section 8, where the achieved results
are 20-60% better than those obtained with regular and random
plans. It is clear that special attention should be paid to the prob-
lem where the joint ranges are lower than 180o. In this case some of
the optimality conditions (28) cannot be satisfied and a sub-optimal
solution should insure minimum of corresponding residuals. How-
ever, the difficulty of applying the rule of thumb can only occur
when at least two joints have narrow limits and it is required to
minimize absolute values of several residuals (28) simultaneously.

Fig. 6. Industrial robot Kuka KR-270 TM.
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Fig. 7. Comparison of the identification accuracy for two types of calibration plans: (i) regular plan [44]; (ii) proposed plan (measurement noise parameter � ≈
0.03 mm, mmin = 40).

Nevertheless, this problem is not common in practice, since such
joint ranges usually are typical for the first joint coordinate only. In
fact, the joint angle q1 is not included in the optimality conditions
(28), and it can be set arbitrary in the optimal plan developed above.

Besides, the developed rule of thumb can be also used to gener-
ate the measurement configurations if there are some constraints
in the Cartesian workspace (work-cell limits, obstacles, etc.). Since
any optimal plan defined by Eq. (28) has a number of redundant
variables that can be set arbitrary, it is usually possible to shift
the measurement configurations in the joint space to achieve an
allowable zone in the Cartesian workspace.

Another question behind the main scope of this paper is related
to the measurement noise impact in actuated joints. However, as fol-
lows from our experience, in practice this factor influence on the
identification accuracy is much lower and almost negligible com-
paring with the measurement errors in Cartesian space. Moreover,
it can be strictly proved that this type of errors does not change
the optimal measurement configurations since their impact on the
parameters identification accuracy (covariance matrix) is described
by the constant diagonal term.

Nevertheless, in spite of the fact that obtained results have been
efficiently applied to the 3D case and allowed us to improve the
identification accuracy, there are several theoretical issues to be
studied in future. In particular, special attention should be paid to
the optimal pose selection for the calibration of serial kinematic
chains with both revolute and translation joints mixed in arbitrary
order (Figs. 6 and 7).

12. Conclusion

The paper presents a new approach for the design of calibration
experiments for robotic manipulators that essentially simplifies
this procedure and eliminates tedious numerical optimization of
measurement poses. The main result is expressed as a system of
trigonometric equations describing the set of optimal configura-
tions, which produces strictly diagonal structure of the information
matrix. It corresponds to the D-optimality principle known in the
design of experiment theory. Relevant technique is formulated in
the form of the “rule of thumb” allowing practicing engineer to
generate desired measurement configurations in a simple way.
The validity of the obtained results and their practical significance
were confirmed via simulation studies that deal with two-, three-
and four-link planar manipulators. Compared to previous works,
the obtained results can be treated as further development of the
design-of-experiments theory that is adapted to the specific type
of the non-linear models that arise in robot kinematics.

Although the main contributions have been obtained for the pla-
nar case, the developed rule has been heuristically generalized for
the case of spatial manipulators and successfully applied to several
articulated robots. An application example, which deals with the
geometric calibration of a Kuka KR-270 industrial robot, also con-
firms the efficiency of the proposed technique. Nevertheless, a strict
theoretical proof of this approach remains the subject of future
work that will focus on the optimal pose selection for calibration
of non-planar serial and parallel manipulators.
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Appendix A. Appendix A

Analytical solutions for the optimality conditions for 2- and 3-
link manipulators

The optimization function for the D-optimality criterion is based
on the determinant of the information matrix and for the consid-
ered problem can be presented as:

det
(

C× CT − S× ST
)
→max (38)

where the matrices C, S are defined by Eq. (23). For illustrative
purposes analytical solutions for the cases of 2- and 3-link manip-
ulators are proposed in the following sub-sections.

A.1. Optimality condition for a 2-link manipulator

For the 2-link manipulator, matrices C, S can be written as

C =
[

m
∑m

k=1cos qk
2∑m

k=1cos qk
2 m

]

S =
[

0
∑m

k=1sin qk
2∑m

k=1sin qk
2 0

]
(39)

This allows us to rewrite the optimization problem (38) as⎛⎝m2 +
(

m∑
k=1

cos qk
2

)2

−
(

m∑
k=1

sin qk
2

)2
⎞⎠2

−
(

2m

m∑
k=1

cos qk
2

)2

→max (40)

that after several transformations leads to⎛⎝m2 −

⎛⎝( m∑
k=1

cos qk
2

)2

+
(

m∑
k=1

sin qk
2

)2
⎞⎠⎞⎠2

→max (41)

Eq. (41) has an obvious maximum that corresponds to

m∑
k=1

cos qk
2 = 0 and

m∑
k=1

sin qk
2 = 0 (42)

Thus, expression (42) defines optimality condition for calibra-
tion plan of 2-link manipulator.

A.2. Optimality condition for a 3-link manipulator

For the 3-link manipulator, let us introduce following notation

x =
m∑

k=1

cos qk
2; z =

m∑
k=1

cos qk
3; v =

m∑
k=1

cos
(

qk
2 + qk

3

)
y =

m∑
k=1

sin qk
2; u =

m∑
k=1

sin qk
3; w =

m∑
k=1

sin
(

qk
2 + qk

3

) (43)

Then, the matrices C, S can be written as

C =

⎡⎣m x v
x m z

v z m

⎤⎦ ; S =

⎡⎣ 0 y w

y 0 u

w u 0

⎤⎦ (44)

This allows us to rewrite the optimization problem (38) as(
m3 + 2yzw + 2xzv− 2yuv+ 2xuz −m

(
x2 + y2 + z2 + u2 + v2 +w2

))2

→max (45)

for which it is required to find a maximum with respect to the
angle coordinates qk

2, qk
3, qk

23, k = 1, m. Expression (45) depends on
the sum of cosines and sines of these arguments. For the conve-
nience purposes these sums are substituted by single unknown
parameters.

Using the above defined assumptions, solution of the optimiza-
tion problem is reduced to finding the extremum of the inner
function and to extracting solutions that correspond to the max-
imum. In order to find the extremum let us compute partial
derivatives of expression (45) with respect to all unknown param-
eters. As a result, one can obtain the following system of equations

m× x = z × v+ u×w m× y = z ×w − u× v
m× z = x× v+ y×w m× u = x×w − y× v
m× v = x× z − y× u m×w = y× z + x× u

(46)

that should be solved with respect to x, y, z, u, v, w. This system
of equations has the following solutions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v = 0

w = 0

z = 0

u = 0

x = 0

y = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v2 +w2 = m2

u = 0

z = 	×m

x = 	× v
y = 	×w

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z2 + u2 = m2

w = 0

v = 	×m

x = 	× z

y = 	× u

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u = 0

v = 0

z = 	1 ×m

w = 	2 ×m

x = 0

y = 	1	2m

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(47)

where 	 = ±1, 	1 = ±1, 	2 = ±1.
Substituting the first solution of (47) in (45) one can obtain that

m3 is the maximum. The second and the third systems of (47) have
two solutions that bring to zero expression (45). It is clear that
such solutions do not ensure the maximum of the squared function.
Similarly, the fourth solution does not bring maximize expression
(45).

As a result, a necessary and sufficient condition to maximize (45)
is

m∑
k=1

cosqk
2 = 0;

m∑
k=1

cosqk
3 = 0

m∑
k=1

cos
(

qk
2 + qk

3

)
= 0

m∑
k=1

sinqk
2 = 0;

m∑
k=1

sinqk
3 = 0;

m∑
k=1

sin
(

qk
2 + qk

3

)
= 0

(48)

That can be interpreted on the plane as a zero sum of unit vectors
based on the optimal angles.
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