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Abstract

The paper addresses a problem of robotic manipulator calibration in real industrial environment. The main contributions are in the area of the
elastostatic parameters identification In contrast to other works the considered approach takes into account elastic properties of both links and
joint. Particular attention is paid to the practical identifiability of the model parameters, which completely differs from the theoretical one that
relies on the rank of the observation matrix only, without taking into account essential differences in the model parameter magnitudes and the
measurement noise impact. This problem is relatively new in robotics and essentially differs from that arising in geometrical calibration. To
solve the problem, physical algebraic and statistical model reduction methods are proposed. They are based on the stiffness matrix sparseness
taking into account the physical properties of the manipulator elements, stricture of the observation matrix and also on the heuristic selection of
the practically non-identifiable parameters that employs numerical analyses of the parameter estimates. In spite of the fact that main theoretical
results have been developed for elastostatic calibration, they can be also efficiently applied for geometric case. The advantages of the developed
approach are illustrated by two application examples that deal with elastostatic and geometric calibration of industrial robot in real industrial
environment.
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1 Introduction

Industrial robots are gradually finding their niche in manufacturing, replacing less universal and more expensive
CNC-machines. Application area of robots is constantly growing, they begin to be used not only for the assembly and
pick-and-place operations, but also for the machining. The latter requires special attention to the accuracy of the model, which is
used to control the manipulator movements. Furthermore, for this process, the robot is usually subject to essential external loading
caused by the machining force that may lead to non-negligible deflections of the end-effector [1] and accordingly degrade the
quality of the final product. This issue becomes extremely important in the aerospace industry, where the accuracy requirements
are very high but the materials are hard to process. In this case, the manipulator stiffness modelling and corresponding error
compensation technique are the key points [2-5], where in addition to accurate geometric model a sophisticated elastostatic one is
required.

In practice, the robot positioning accuracy can be improved by means of either on-line or off-line error compensation
techniques [6-8]. It is clear that both approaches should rely on the accurate model, which is able to describe the end-effector
deviation due to manufacturing tolerances and the external loading. Usually main geometric errors (such as offsets and link
lengths) can be efficiently compensated by modifying internal parameters of the robot controller [9, 10]. In contrast, the
compliance errors (as well as some geometric errors) have to be compensated via modification of the controller inputs. Relevant
on-line compensation strategy requires external measurement system that continuously provides the end-effector coordinates,
which are compared with the computed ones (obtained from direct geometric model of the robot controller) and the differences
are used for adjusting the input trajectory [11, 12]. The most essential advantage of such an approach is ability to compensate all
sources of robot inaccuracy. However, suitable measurement systems are quite expensive and often cannot ensure tracking the
reference point in a whole robot workspace. Moreover, behavior of some technological processes hampers the end-effector
observability (cutting chip in milling, for instance) and may damage the measurement equipment. In such a case, an off-line error
compensation technique looks more reasonable; it is aimed at adjusting the target trajectory in accordance with the errors to be
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compensated and the geometric model used in the robot controller [7, 13]. It is evident that the efficiency of the latter approach is
quite sensitive to the model completeness and the accuracy of its parameters.

To achieve desired degree of accuracy, the manipulator model should be calibrated for each particular [14, 15]. In modern
robotics, there exist a number of techniques that allow user to identify geometric and elastostatic parameters of either serial or
parallel manipulators. In general, classical calibration procedure contains four basic steps: modeling, measurement, identification
and implementation [16]. The first step is aimed at development of a model, which is accurate enough and also is suitable for the
identification (i.e. without redundant parameters that can cause numerical problems). Relevant techniques are usually based on
different parameterization methods of robot geometry that produce obviously complete (but redundant) models that are subject to
further reduction. In early works of Hollerbach [17], Veitschegger and Wu [18], the Denavit-Hartenberg (D-H) parameterization
was used, which describes the link-to-link transformations via 4 geometric parameters only that does not guaranty the model
completeness in general case. Later, Hollerbach et. al. [19] and Hayati et. al. [20, 21] modified the D-H approach by utilizing 5
parameters to describe these transformations. Further developments led to models with 6 parameters per transformation, they
have been used by Stone [22] and Whintey et. al. [23]. Any of these parameterizations can be used for geometric modeling;
however to be suitable for calibration, the number of the parameters should be non-redundant. In practice, the maximum number
of the identifiable geometric parameters is evaluated using so-called POE formula [24, 25].

In the manipulator stiffness modelling, there are three main approaches: the Finite Element Analysis (FEA), the Matrix
Structural Analysis (MSA), and the Virtual Joint Method (VJM). The most accurate of them is the FEA-based technique [26],
which allows presenting manipulator components with their true shape and dimension. However, this method is usually applied at
the final design stage because of the high computational expenses [27]. The MSA method [28] incorporates the main ideas of the
FEA, but operates with rather large elements — 3D flexible beams. This obviously leads to the reduction of the computational
efforts, but does not eliminate the disadvantages of FEA. And finally, the VJM method [29-32], is based on the extension of the
traditional rigid model by adding the virtual joints (localized springs), which describe the elastic deformations of the links, joints
and actuators. This technique provides reasonable trade-off between the model accuracy and computational complexity, which
will be further used in this paper.

At the following step, the measurement data are obtained that are required for the identification equations. These data can be
gotten using open-loop and closed-loop methods. The first approach provides the Cartesian coordinates of the reference point(s)
using external measurement system (laser tracker or coordinate measurement machine, for instance). The second approach uses
some physical constraints imposed on the end-effector (by fixing the reference point or assuming that it belongs to a plane, for
instance) that create an auxiliary closed-loop providing the desired measurement data. In practice, both approaches are used. For
example, Nubiola and Bonev [33], Bai et. al. [34], and Klimchik et. al. [35] used the laser tracker systems for geometric and
elastostatic calibrations. An alternative technique was used by Takeda et. al. [36] who utilized the double ball-bar system for
calibration in-parallel actuated mechanisms. The end-effector plane constraints were used by Ikits and Hollerbach [37] to
calibrate a serial anthropomorphic manipulator.

The next step, identification, is aimed at tuning the model parameters in accordance with the experimental data. It should be
mentioned that in the literature there exist different algorithms to solve this problem, which differ in the type of original
measurement data (Cartesian coordinates, distance to the reference point/line, end-effector orientation, etc.) and numerical
optimization techniques (gradient search, simulated annealing, genetic algorithms, etc.). Some of them are implemented in ROSY
software [38], which can be applied for calibration of both serial and parallel robots using measuring tool with two digital CCD
cameras. An alternative geometric parameter identification method that is based on a laser-ranger attached to the end-effector was
used in [39]. In [40], dedicated differential techniques were applied that use measurement data from structured laser module and
stationary camera in order to estimate parameters of 7-DOF humanoid manipulator arm. In [41], the authors applied a
backpropagation neural network to compensate the joint errors of the neurosurgical robot system. Santolaria et.al. [42] utilised the
ball bar gauge measurement device and identification technique whose objective function includes terms that are regarding
repeatability and measurement accuracy. To improve the static positioning accuracy of the PA10-6CE robot, in [43] a
30-parameter model incorporating elastostatic ones has been used. The screw measurement method that utilizes laser tracker with
an active target and identification procedure that is based on circle point analysis was used in [44] to identify the kinematic
parameters of an industrial robot. In [45], the authors presented a 12-parameter error kinematic model for the three linear
actuators of the Gantry-Tau robot and used three types of measurement equipments (laser interferometers, linear encoders and
double-ball bars) to calibrate the linear actuators.

The last step, implementation, deals with modification the robot control software in accordance with the parameters identified
at the previous step. However, in practice, commercial robot software is not opened and rather limited number of manipulator
parameters can be modified directly (to simplify direct and inverse kinematics, it is usually assumed that a number of joint axis
are strictly parallel or orthogonal). For this reason, the most common technique is the modification of the robot control program
(i.e. adjusting of the robot control inputs related to the target trajectory), which can be also treated as the compensation of the



difference between nominal and real parameters identified from the experimental study . On this level it is not supposed to use any
additional measurement equipment (in contrast to general compensation strategies described above). To compensate manipulator
positioning errors, both on-line and off-line methods can be applied. The simplest approach here is so-called the “mirror”
technique that has been applied in [7, 46] to compensate the compliance errors. The modification of this method proposed by
Klimchik et. al. [4, 13] is able to take into account non-linear properties of the geometric and elastostatic model.

To improve identification accuracy, it is possible to include an additional step into the calibration procedure that is aimed at
selection of optimal measurement configurations (it can be treated as design of calibration experiments). This idea has been used
by a number of authors and allowed them to reduce calibration errors without increasing the cost of experiments. In particular,
Borm and Menq [47] showed that proper selection of measurement configurations is more important for the identification
accuracy than simply increasing the number of measurements m that yields the improvement factor 1/\/5 [48]. It should be
mentioned that even for fully automated measurement systems [49, 50] where the cost of each experiment is relatively low, this
issue remains important because it is more efficient if the measurement configurations are selected properly. For this reason, there
are a number of works devoted to the optimal measurement configurations selection that are based on different criterion and
employ some techniques known from the classical design of experiment theory [48]. For example, Khalil et. al. [51] determined
the set of optimal measurement configurations by minimizing the condition number of the observation matrix. Nahvi and J. M.
Hollerbach [52] used the noise amplification index to find the measurement configurations. Daney [53] used the constrained
optimization algorithm based on the minimization of the singular values product for Gough platform calibration. In [54], the idea
from D-optimality criteria has been used to quantify optimal measurement configurations for a general nR planar manipulators.
Zhuang et. al. [55] applied simulating annealing to find measuring configurations that are optimal with respect to two considered
performance measures. In some works, to qualify sets of measurement configurations, the robot positioning accuracy after
calibration has been used as a performance index [56, 57].

It should be mentioned that calibration of the elasto-static model is much more difficult compared to the geometric one. For a
simple case, when only elasticity of the actuated joints is taken into account, an efficient approach has been proposed in [58, 59],
but this simplification does not allow describing some important deflections of the end-effector. More sophisticated model
describing both the joint and link elasticity can be developed use CAD-based technique proposed in our previous work [60].
However, this model includes huge number of parameters that cannot be identified separately using conventional measurement
data (describing end-effector deflections caused by external force/torque). It means that from mathematical point of view, this
technique may produce redundant models that are not suitable for calibration. For instance, attempts to solve the identification
problem for the whole set of the elastostatic parameters (258 for 6 d.o.f. manipulator) leads to the fail of the numerical routines
that is caused by singularity of the relevant observation matrix.

As follows from literature review, similar problem is also known in geometric calibration where the concept of
complete-irreducible-continues model has been introduced and relevant algebraical tools for the model reduction have been
developed [61-63]. However, in elastostatic calibration there is an additional difficulty caused by high number of relatively small
parameters for which the measurement noise impact is very essential. According to our experience, even for non-redundant
models, the identification results may violate fundamental physical properties of the stiffness matrices, such as
positive-definiteness and symmetry, and are not acceptable for the compliance error compensation (more details are given in
Section 3.2 presenting a motivation example). For this reason, this paper introduces a new notion of practical identifiability and
proposes corresponding model reduction methods that allow obtaining reliable results in real industrial environment.

To address the above mentioned problem, the remainder of the paper is organised as follows. Section 2 presents the stiffness
modelling background. Section 3 describes the elastostatic calibration procedure and contains a motivation example allowing us
to define the research problems. In Section 4, the developed model reduction methods are presented. Section 5 contains
application examples that illustrate advantages of the proposed technique. And finally, Section 6 summarises the main
contributions of the paper.

2 Manipulator stiffness modeling background

Let us consider elastostatic model of a general serial manipulator, which consists of a fixed “Base”, a serial chain of flexible
“Links”, a number of flexible actuated joints “Ac” and an “End-effector” (Figure 1). It is assumed that all links are separated by
either rotational or translational joints. Such architecture can be found most of industrial serial robots.

In order to evaluate the stiffness of the considered manipulator, let us apply the virtual joint method (VJM), which is based on
the lump modelling approach [64, 65]. According to this approach, the original rigid model should be extended by adding virtual
joints (localized springs), which describe elastic deformations of the links. Besides, virtual springs are included in the actuated
joints, in order to take into account the stiffness of the control loop. Under these assumptions, the kinematic chain can be
described by the following serial structure:



(@ a rigid link between the manipulator base and the first actuated joint described by the constant homogenous
transformation matrix Tg, ;

(b)  several flexible actuated joints described by the homogeneous matrix function T, (@' +6,.) , which depends on
the actuated joint variable g' and the virtual joint variable 6, that takes into account the joint compliance;

(©) a set of rigid links, which are described by the constant homogenous transformation matrices T[ink ;

(d) asetof 6-d.o.f. virtual joints that take into account the link flexibility and are described by the homogeneous matrix
function TVJM.(B'Link) vyhich depgnds on the virtual jo_int variables 0,,, =(6,, 6,, 6,, 0, , 6, , 6,,) corresponding
to the translation/rotation deflexions in/around the axis x, y, z;

(e) arigid link from the last joint to the end-effector, described by the constant homogenous matrix transformation
T.

Tool *

6-d.o.f. 6-d.o.f. 6-d.o.f.
spring spring spring

Rigid Link
A ; ink

. . Virtual springs
a) kinematic model b) VIM model

Base Actuated joints End-effector

Flexible links

Figure1l Serial manipulator and its VJM model

In the frame of these notations, the final expression defining the end-effector location subject to variations of all joint
coordinates may be presented as the product of the following homogenous matrices and matrix functions

T= TBase : LHT;oint (ql + elAc) ! TIi_ink ' TVJM (Bil_ink )J : TTooI (1)
i=1

where n is the number of links/joints, and the components T,..., , Tii () Tiie Tuon () Troo May be factorized with respect to
the terms including the joint variables (in order to simplify computing of the derivatives). For further convenience, after
extraction from the homogeneous matrix T rotation and translation components [66], the kinematic model can be rewritten in
more conventional form

t=9(a,0) (2)

where g(.) denotes relevant vector function, the vector t=(p, ¢)" defines the end-effector position p=(x,y, z)" and
orientation ¢ =(g,, @,, »,)" , the vector q=(q,0,, .., 0,) aggregates all actuated coordinates, the vector
0=(0, 0,, ... 9,)" collects all virtual joint coordinates, and n, is the number of the virtual joints. It should be noted that here
the values of coordinates q are completely defined by the robot controller, while the values of the virtual joint coordinates 0
depend on the external loading applied to the robot end-effector.

To take into account manipulator stiffness properties, let us assume that variations in the virtual joint variables @ generate the
force/torque applied to the corresponding links that are evaluated by the following linear equation (it can be treated as a
generalised Hooke's law for the manipulator) T, =K, -0, where t, = (z,,, 755, -..» Te,ne)T is the aggregated vector of the virtual
joint reactions, K, =diag(K,,, K,, ..., K, ) is the aggregated virtual spring stiffness matrix, and K, ; is the spring stiffness
matrix of the corresponding link/joint. Further, let us apply the principle of virtual work assuming that the joints are given small,
arbitrary virtual displacements A@ in the equilibrium neighbourhood. Then, the virtual work of the external wrench w applied
to the end-effector along the corresponding displacement At=J,-A@ is equal to (w'-J,)-A@ , where J, =of (q,0) /0 is the
kinematic Jacobians with respect to the virtual variables @, which may be computed from (2) analytically or semi-analytically,
using the factorization technique proposed in [64]. On the other hand, for the internal forces t,, the virtual work includes only
one component —t," - A@ . Therefore, since in the static equilibrium the total virtual work is equal to zero for any virtual
displacement, the equilibrium conditions may be written as

J, w=r, ©)

This gives additional expressions describing the force/torque propagation from the joints to the end-effector that should be
considered simultaneously with the geometric equation (2).

Combining further the virtual joint reaction equation t, =K, -0, the equilibrium condition (3) and the linearized geometric
model At=J,-A, it is possible to write statics equations



J, 0=At; w-J," -K,-0=0 (4)

describing elastostatic properties of the considered manipulator. In these equations, the end-effector displacement At is treated
as the model input and the external wrench w is the model output, which corresponds to the representation of the manipulator
stiffness matrix in the following form

W= KAt ()

where K. is the desired Cartesian stiffness matrix of the considered manipulator for given robot configuration g. To find this
matrix, equations (4) may be presented in the matrix form

0 NN w| | At
L ®
and solved for W. This transformation yields the following force-deflection relation J, -K;*-J," -w = At that allows us to
express the manipulator Cartesian stiffness matrix as

Ke=(3,K3,7)" (7)

This expression allows us to compute the Cartesian stiffness matrix assuming that the matrix K, = diag(K{", K, ...), defining
elastostatic properties of the manipulator links/joins is given. However, in practice, the matrices {Kg‘),i =1,2,...! are unknown
and should be identified from relevant experiments. However, there are a number of numerical problems that may arise here that
are in the focus of the remaining parts of the paper.

3 Problem of elastostatic parameters identification

3.1 Methodology of elastostatic identification

To estimate the desired matrices describing elasticity of the manipulator components (i.e., compliances of the virtual springs
presented in Fig. 1), the elastostatic model (5) should be rewritten as

A=Y (I9KPI0T ®

where At is the vector of the end-effector displacements under the loading w , the matrices k& = (K{’)™ denote the link/joint
compliances that should be identified via calibration, and the matrices J¢ are corresponding sub-Jacobians obtained by the
fractioning of the aggregated Jacobian J7 =[J®",J?",...]. For the identification purposes, this expression should be transformed
into more convenient form, where all desired parameters (elements of the matrices k{’,i=12,...) are collected in a single vector

m= (k) kD, ..k{) . 1t yields the following linear equation

At=A(Q,W|n)-w 9)
where

A@Q,w|m) =[J,J]w,J,IIw,....,J, Il w] (10)

is so-called observation matrix that defines the mapping between the unknown compliances = and the end-effector
displacements At under the loading w for the manipulator configuration g . Below, for the presentation convenience this
matrix will be also referred to as A_, where the subscript defines the parameters set for which the observation matrix is
computed. Here, the vectors J, are the columns of the matrix J,, i.e. J, =[J,,J,,....,J,,].

Taking into account that the calibration experiments are carried out for several manipulator configurations defined by the
actuated joint coordinates q;, j =1,m, the system of basic equations for the identification can be presented in the following form

At, =A@, W, |m)-m+g;  j=1m (11)

where g; denotes the vector of measurement errors. For further convenience, let us also present the system of m equation (11) in
a matrix form

At, =A,(q,, W, |m)+e, (12)



where subscript "a" indicates that matrices/vector aggregate corresponding components for m configurations. Below, the matrix
function A,(q,,w, | w) will be also referred to as A . Further, using these notations and assigning proper weights for each
equation, the identification can be reduced to the following optimization problem

F=z:ﬂ:l(Aﬂjn—Atj)TnTn(Aﬂjn—AtJ)—>min (13)

where n is the matrix of weighting coefficients that normalizes the measurement data, A; = A(Q;,w; | @) . This minimization
problem yields the following solution

= (ZLA;J'“T"AM )71' (ZLAL‘“T“A% ) : (14)

If the measurement noise is Gaussian (as it is assumed in conventional calibration techniques), expression (14) provides us with a
unbiased estimates for which E(#) = . Corresponding covariance matrix evaluating the dispersion of the parameter estimate #
from one identification session to another can be computed as follows

m -1 m m -1
cov(#) = (ZMAL- nTnA”j) D LA A (ijlAf,anA,,,-) (15)

where the matrix X* = E(-&") describes the statistical properties of the measurement errors.

It can be proved [67] that the best results in terms of the identification accuracy are achieved if n=X". It leads to the
following covariance matrix of the manipulator compliance parameters

cov(f) = (Z ATTTEA ) (16)

Such assignment of the weighing coefficients n also allows us to avoid the problem of different units in the objective function
(13), which arises in straightforward application of the leas-square technique to the robot parameters identification if the
measurement system provides both position and orientation data. It should be noted that this particularity is usually omitted in
conventional robot calibration. Another way to improve the identification accuracy is related to the proper selection of
manipulator measurement configurations {q;, j =1,m; that is also known as the calibration experiment planning [68], which
directly influences on the observation matrices A(q;,w; |a) and on the covariance matrix (16).

It is clear that expression (14) gives reliable estimates of the parameters « if and only if the matrix Z ALZTEZTA s
invertible. It leads to the problem of the parameter identifiability that have been studied by a number of authors for the problem of
geometrical calibration [62, 63]. Relevant techniques are based on the information matrix rank analysis (via either SVD- or
QR-decomposition). However, in real industrial practice where the measurement not is non-negligible, the identifiable
parameters are not equivalent in terms of accuracy (both absolute and relative) and expression (14) can give rather surprising
results for some of them. This motivates revision of the above mentioned notion (parameter identifiability) and its extension
taking into account the identification accuracy defined by the covariance matrix (16). In the following sub-sections, the notion of
practical identifiability is introduced and a motivation example is presented, which illustrates potential problems that may arises
in the manipulator elastostatic calibrations if conventional techniques are applied.

3.2 Difficulties in elastic parameters identification

To illustrate the problems that may arise in identification of the manipulator elastostatic parameters, let us consider a
numerical example that deals with a single link of the Orthoglide manipulator (Figure 2). Its compliance matrix has been obtained
in [64] and is equal to

[4.5010°® 0 0 0 0 0 |
0 8.0110°° 0 0 0 3.9810
-5 —4
K| .0 0 3.6410 0 y ~1.7110 0 an
0 0 0 3.7610 0 0
0 0 -1.7110™ 0 1.0910°° 0
0 3.9810 0 0 0 26510 |

where the values are expressed in Sl units (N, m, rad).
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(a) Principal link of Orthoglide manipulator (b) Architecture of Orthoglide manipulator

Figure 2  Manipulator link considered in the motivation example

Let us simulate the calibration process assuming that the matrix (17) should be estimated by means of the identification
algorithm described above, where the input data are generated by means of virtual experiments. In the frame of these experiments,
the link is assumed to be fixed on one side and the external loading w is applied on the another side. For each loading, the
corresponding deflection vector is computed in accordance with expression At; =k-w, +¢;, where g, is the measurement noise.
In accordance with the physical properties of the examined link and to conserve the linearity of the force-deflection relation, the
loading magnitude has been limited by 10N for the forces and 10Nm for the torques. The measurement noise magnitude has
been defined as o, =25um for the positional components and as o, =0.25mrad for the orientation components (these values
correspond to the precision of the best industrial measurement systems that currently are available on the market). These virtual
experiments has been carried out six times, in order to obtain sufficient number of equations for the identification of 36 desired
parameters k; .

For these virtual experiments, the properties of the observation matrix used in the identification expression are quite good:
rank is equal to 36 and the condition number is 1.00. Nevertheless, the identification are rather “surprising™: the obtained
compliance matrix essentially differs from the original one and is

[-3.0510° -8.7110° 1.86107 | 159107 -7.7210° 1.15107
453107 8.0510° -2.0740" @ 1.98107 1.14107 3.98.10"
i 229107 3.76107 3.65.10°  -2.25107 -1.71-10* 1.1310° (18)
-1.4210" 1.8310° 7.05107 | 3.76:10° 1.1110° 4.1210°
3.2710° 1.2310° -1.68-10* : 3.9910° 1.09-10° -5.0710°
| -2.6110° 3.97.10° -1.0610° @ 2.81107 -4.5810° 2.65:10° |

Detailed comparison analysis of the original matrix k and its estimate k allows us to make the following conclusions
concerning the harmful impact of the measurement noise on the identification of the elastostatic parameters in real industrial

environment:

(i)

(i)
(iii)
(iv)

v)

the obtained compliance matrix k may lose the properties of positive-definiteness, which completely contradicts
to the common physical sense that is based on the energy-based definition of k™' (in particular, in the above
example, k,, <0 is not acceptable);

the obtained matrix k may be non-symmetric, which also contradicts to the physical sense (for instance, k., and
Kk, , which corresponds to non-zero elements of k , are not equal and differ by 2%);

for some small elements, the identification accuracy may be extremely low (for example the element RM , Which is
~10° times less than k,, and k., has been identified completely wrongly);

in the obtained matrix k , the number of non-zero elements is redundant compared to the original matrix k ;
moreover, it is difficult to dlstmgwsh small elements k from so-called zero elements, which correspond to exact
zeros in k induced by the physical properties of the examlned link (for instance, the element k21 that should be
equal to zero by definition is the same order of magnitude as k,,, which should be small but strictly positive);

for the remaining elements, whose magnitude is high enough, the identification errors are quite acceptable (from
0.01% to 1.67%), but they should be further reduced by increasing number of the experiments.

It should be noted that for essentially lower measurement noise (with o, and o, that are 100 times smaller) the above
mentioned problems do not exist, however such measurement precision is not achievable in industrial environment at present.

Hence, as follows from this motivation example, the whole set of 36 elastostatic parameters {kij;1 composing the 6x6 matrix

k cannot be

estimated using commercially available measurement systems. The main reason for this difficulty is that, for some



elements, corresponding deflections under the admissible loading are comparable with the measurement noise. To detect these
indistinct elements, a simple indicator can be applied showing parameter-to-noise ratio (which is similar to signal-to-noise ratio
in communication):

(012 035 0.74 : 0.64 031 0.46]

i 1.81 322 083 079 0.46 1593

Iky || 1091 1.50 146 | 0.89 684 0.45 (19)
T10.06 0.7370.28 1504 0.44 1.64

131 049 -67.3 160 436 2.02

1104 159 042 011 002 1060

where o is a corresponding element of the relevant covariance matrix. As follows from these numerical values, 27 of 36 desired
parameters can be hardly estimated from the experimental data with realistic measurement noise. Only for 9 parameters K,,, K,
Kags Kass Kugo Koo Kess Kep o Keg the ratio is high enough (more than 50), so they can be treated as "practically identifiable". It
should be stressed that similar indicators computed using exact values of k;; (which are unknown in practice) give similar result

08 0 0 0 0 O
30 0 0 0 1592
k1| | o o0 146 0 684 O
o 0

0

0

o

(20)

o; 0 0 1504 0 0
0 684. 0 436 O
159 0 : 0 0 1060

allowing us to detect the same set of small or zero parameters whose identifiability is questionable. On the other side, the impact
of these parameters on the elastostatic deflections is so small that they can be reasonably excluded from the desired stiffness
model. These results confirm importance of the above pointed problems, which below are considered in details.

Summarising theoretical background and simulation results presented above, it is possible to make the following conclusions:

M complete elastostatic model of robotic manipulator includes huge number of parameters (258 for conventional
6 d.o.f. serial robot), whose simultaneous identification in presence of measurement noise is rather difficult or even
impossible;

(if)  before applying the least-square identification technique , the manipulator elastostatic model should be reduced and
redundant parameters should be eliminated, in order to ensure invertibility of the information matrix; this step can
be performed using techniques similar to those developed for the geometrical calibration;

(iii)  among the remaining non-redundant parameters, there are a number of non-significant ones, whose absolute values
are relatively small, the identification accuracy is quite low and the impact on the compliance of the of the entire
manipulator is almost negligible; these parameters can be treated as "practically non-identifiable™ and should be
also eliminated from the model, but relevant techniques are not available yet;

(iv)  while developing relevant techniques allowing detection of "practically identifiable” parameters, it is prudent to
take into account some specific properties of the compliance matrices induced by the elasticity physics such as the
compliance matrix symmetry, presence of strictly zero elements (matrix sparseness), positive-definiteness, etc.

Hence, to obtain reliable stiffness model that is suitable for calibration, and that contains only significant and practically
identifiable parameters while describing manipulator elastostatic properties sufficiently good, it is necessary to develop dedicated
model reduction techniques and relevant rules allowing us to minimise number of parameters to be estimated and to reconstruct
the original VIM-based model from these data taking into account mathematical relations between the model parameters caused
by their physical sense.

4 Practical identifiability in manipulator calibration

4.1 Basic assumptions and terminology

Let us assume that the vector of desired elastostatic parameters & should be identified from the set of the linear equations (11)
whose least square solution is defined by the expression (14), where the observation matrices A(q;,w; |x) are computed for
certain set of measurement configurations {q;} and loadings {w, } . Depending on the matrix set {A_; | , corresponding system
of linear equations can be solved for m either uniquely or may have infinite number of solutions. In general, if the information
matrix is rank-deficient, a general solution of the system (11) can be presented in the following form



A=A B, +(I-AJA; )L (21)
where the superscript "+" denotes the Moore-Penrose pseudoinverse, A, = ZLA;,-TITHA,”- . By = zjm:lAf,jnTnAt,,j and A
is an arbitrary vector of the same size as x . Using the later expression, all desired parameters contained in the vector & can be
divided into the following groups [63]:

G1: Identifiable parameters that can be obtained from (21) in unique way and are independent from the arbitrary vector
L,

G2: Non-identifiable parameters that cannot be computed uniquely from (21) and can take on any value without
influence on the right-hand side of the equation (9), they correspond to the zero columns of the observation matrix
A_;

G3: Semi-identifiable parameters that are also cannot be computed uniquely but have influence on the right-hand side of
the equation (9); they are united in subgroups where a single one can be treated as identifiable if the remaining ones
are fixed.

To present typical examples of the parameters belonging to the groups G1, G2 and G3, it is possible to use the ideas similar to
geometrical calibration. For instance, the elastostatic parameters of the actuated joints and adjacent links are redundant in their
totality and belong to the group G3. Besides, if the loading direction cannot be altered, a number of parameters belong to the
group G2 and cannot be identified from the corresponding experimental data. So, complete and irreducible model should contain
all parameters from the group G1 and partially parameters of the group G3. More details on issue will be given in Section 4.3.

In this paper, in contrast to previous works, this classification is enhanced taking into account practical issues related to the
limited precision of the measurement system. The main idea is to compare the absolute value of the estimated parameter with the
range of possible fluctuations of the estimate caused by the measurement noise. For computational reasons, it is convenient to
introduce a numerical indicator similar to the signal-to-noise ratio in communication, which is defined as follows

vi=|z|le, 1=12,.. (22)
where o; is the standard deviation of the parameter estimate 7, extracted from the diagonal of the covariance matrix (16). It is
clear that v; can be treated as the inverse of the relative accuracy, which allows us to avoid the problem of division by zero. In the
following sections this indicator will be referred to as parameter-to-noise ratio.

Using the above defined indicator, the set of parameters belonging to the group G1 (theoretically identifiable) can be further
divided into three subgroups:

G1+: Practically identifiable parameters, for which the accuracy indicator is high: v, > v, ; this subgroup describes
principal elastostatic properties of the manipulator and should be certainly included in the reduced model used in
the identification routines;

G1-: Practically non-identifiable parameters, for which the accuracy indicator is low: v, <v; ; this subgroup contains
non-essential parameters that can be assigned to zero in the VIM-model without essential impact on its precision
(in practice, the majority of these parameters are nominally equal to zero due to the physical nature of the
compliance matrices);

G1~: Practically semi-identifiable parameters, for which the accuracy indicator is intermediate: v, <v, <v; ; the
parameters belonging to this subgroup are practically non-identifiable for the current experimental setup but,
hypothetically, can be converted into practically identifiable ones by increasing the experiment number, improving
the measurement precision of by modification of the measurement configurations.

An open question however is related to justified assigning of the upper and lower bounds v, and v, . From practical point of
view that is adopted below, it is reasonable to use v, =5 and v, =2, which is in a good agreement with the quantiles of the
normal distribution. However, the user may modify these values in accordance with the specificity of the problem of interest.

The above presented definitions allow us to revise the concept of "suitable-for-calibration" model that in previous works
included all parameters of the group G1 (this model is also referred to as the "complete and irreducible™ one). In this work, this
model is limited to include only parameters of the subgroup G1+ (practically identifiable) that can be estimated with reasonable
accuracy and provide good approximation of the original complete model. The following subsections address different aspects of
model reduction allowing us to obtain the desired model suitable for the elastostatic calibration.

It should be noted that, in spite of the fact that the main focus of the paper is on the elastostatic modelling, similar ideas can be
also successfully applied in manipulator geometric calibration.



4.2 Model reduction: physical approach (n= — n’)

Straightforward approach to the manipulator stiffness modelling leads to the exhaustive but redundant number of parameters
to be identified. For instance, each links is described by a 6x6 matrix that includes 36 parameters that are treated as independent
ones. However, as follows from physics, number of the pure physical and independent parameters is essentially lower (for a trivial
prismatic beam, for example, there are only five physical parameters: three describing the geometry and two describing the
material properties). Hence, there are strong relations between these 36 parameters but this fact is usually ignored in elastostatic
calibration. Besides, due to fundamental properties of conservative system, the desired compliance matrices should be strictly
symmetrical and positive-definite. In addition, for typical manipulator links, the compliance matrices are sparsed due to the shape
symmetry with respect to some axis, but this property is also not taken into account in identification of the elastostatic parameters.

To take advantages of the compliance matrix properties and to increase the identification accuracy, two simple methods can be
applied that allows us to reduce the number of parameters to be computed in the identification procedure (14). They can be treated
as the physics-based model reduction techniques and formalised in the following way.

M1:Symmetrisation. For all compliance matrices k to be identified, replace the pairs of symmetrical parameters
{k;. k;;} by asingle one k;, i< j.

ij? ij?
For each link, this reduction procedure is equivalent to re-definition of the model parameters vector in the following way

a=M-n (23)

where the binary matrix M of size 36x 21 describes the mapping from the original to reduced parameter space. It can be proved
that corresponding basic expression for the identification (9) can be rewritten as

At=A@Q,W| ) (24)
where A(q,w|x’) = A(q,w|x)-M denotes the reduced observation matrix. The later can be also computed as
A@Qw|r) =[J,0Jjw, J,o,J)w, ..J,0, I w] (25)

where o, ,®,,... denote the binary matrices of size 6x6 for which non-zero elements (i.e. equal to 1) are located in the following
way: for the parameter 7, corresponding to the matrix elements k;, i < j , the non-zero elements are «; = w; =1. Itis clear that
this idea allows us to reduce the number of links compliance parameters from 36 to 21 (and from 258 to 153 for the entire 6 d.o.f.

manipulator).

M2:Sparcing. For all compliance matrices k to be identified, eliminate from the set of unknowns the parameters k;
corresponding to zeros in the stiffness matrix template k° derived analytically for the manipulator link with similar
shape.

To obtain a desired template matrix, is convenient to use any realistic link-shape approximation. For example using the trivial
beam [69], the desired template can be presented as

0 0:000
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where the symbol "*" denotes non-zero elements. It allows further reducing the number of the unknown parameters from 21 to 8,
taking into account only essential ones from physical point of view. It can be also proved that the template (26) is valid for any
link whose geometrical shape is symmetrical with respect to three orthogonal axes. But it is necessary to be careful if this property
is not kept strictly.

It should be stressed that the actuated joint compliances cannot be identified separately. So, they should be included in the
compliance matrix of the previous link by means of modification of the corresponding diagonal elements.

M3:Aggregation. Eliminate from the set of model parameters the ones that corresponds to joint compliances before
which there is an elastic link; in terms of parameters identifiability the compliance of those joints cannot be split
from the links.

Summarizing these methods, it should be mentioned that the above presented approach essentially reduce the number of
parameters to be identified (by the factor 4.5) but they do not violate such basic properties as the mode completeness, i.e. the
ability to describe any deflection caused by the external loading. Below, these reduced set of the original model parameters =

10



will be referred to as n'. However, the obtained reduced model may still have some redundancy in the frame of entire
manipulator, where the virtual springs of adjacent joints/actuators cause similar impact on the end-effector deflections under the
loading.

To illustrate efficiency of the methods M1 and M2, the identification problem considered in section 3.2 have been solved for
reduced set of the compliance parameters. It yielded the following result

[-3.0510° 0 0 0 0 0 |
0 8.0510°° 0 0 0 3.9810™
0o 0o o 3.6410° 0 ; L1710 0 @7
0 0 0 3.7610 0 0
0 0 -1.7110™* 0 1.0910°° 0
0 3.9810™ 0 0 0 2.65107 |

which is essentially better compared to (18). In particular, the identification errors for the most of the desired parameters are less
than 0.4%, i.e. 4 times lower. The only exception is the small element %, that is still negative and contradicts to the physical
sense. This motivates further efforts to obtain reliable stiffness model whose parameters can be calibrated in real industrial
environment.

From the geometrical calibration it is known that in spite of the fact that redundant model is suitable for direct and inverse
computations it cannot be used in identification since the observation matrix does not have sufficient rank. Similar problem arises
in elastostatic calibration where some stiffness matrix elements of adjacent links/joints are coupled and cannot be identified
separately. The problem of construction complete and irreducible model has been widely studied in geometrical calibration and
the developed techniques can be adopted for the elastostatic calibration.

4.3 Model reduction: algebraic approach (o' —>=")

The physical approach described in the previous sub-section allows us essentially reducing the number of model parameters.
However, it does not guarantee that the obtained model is suitable for calibrations (i.e. that the model is non-redundant and the
number of parameters is equal to the observation matrix rank). In practice, the following inequality is often satisfied:
rank(A,(q,.w, |m'))<dim(n') . To overcome the problem, this sub-section presents some algebraic tools aimed at further
reduction of the model parameter set from ' to &t", which ensures full identifiability:

rank(A, (q,,w,