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Abstract 

The paper addresses a problem of robotic manipulator calibration in real industrial environment. The main contributions are in the area of the 
elastostatic parameters identification In contrast to other works the considered approach takes into account elastic properties of both links and 
joint. Particular attention is paid to the practical identifiability of the model parameters, which completely differs from the theoretical one that 
relies on the rank of the observation matrix only, without taking into account essential differences in the model parameter magnitudes and the 
measurement noise impact. This problem is relatively new in robotics and essentially differs from that arising in geometrical calibration. To 
solve the problem, physical algebraic and statistical model reduction methods are proposed. They are based on the stiffness matrix sparseness 
taking into account the physical properties of the manipulator elements, stricture of the observation matrix and also on the heuristic selection of 
the practically non-identifiable parameters that employs numerical analyses of the parameter estimates. In spite of the fact that main theoretical 
results have been developed for elastostatic calibration, they can be also efficiently applied for geometric case. The advantages of the developed 
approach are illustrated by two application examples that deal with elastostatic and geometric calibration of industrial robot in real industrial 
environment.  
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1 Introduction 

Industrial robots are gradually finding their niche in manufacturing, replacing less universal and more expensive 

CNC-machines. Application area of robots is constantly growing, they begin to be used not only for the assembly and 

pick-and-place operations, but also for the machining. The latter requires special attention to the accuracy of the model, which is 

used to control the manipulator movements. Furthermore, for this process, the robot is usually subject to essential external loading 

caused by the machining force that may lead to non-negligible deflections of the end-effector [1] and accordingly degrade the 

quality of the final product. This issue becomes extremely important in the aerospace industry, where the accuracy requirements 

are very high but the materials are hard to process. In this case, the manipulator stiffness modelling and corresponding error 

compensation technique are the key points [2-5], where in addition to accurate geometric model a sophisticated elastostatic one is 

required. 

In practice, the robot positioning accuracy can be improved by means of either on-line or off-line error compensation 

techniques [6-8]. It is clear that both approaches should rely on the accurate model, which is able to describe the end-effector 

deviation due to manufacturing tolerances and the external loading. Usually main geometric errors (such as offsets and link 

lengths) can be efficiently compensated by modifying internal parameters of the robot controller [9, 10]. In contrast, the 

compliance errors (as well as some geometric errors) have to be compensated via modification of the controller inputs. Relevant 

on-line compensation strategy requires external measurement system that continuously provides the end-effector coordinates, 

which are compared with the computed ones (obtained from direct geometric model of the robot controller) and the differences 

are used for adjusting the input trajectory [11, 12]. The most essential advantage of such an approach is ability to compensate all 

sources of robot inaccuracy. However, suitable measurement systems are quite expensive and often cannot ensure tracking the 

reference point in a whole robot workspace. Moreover, behavior of some technological processes hampers the end-effector 

observability (cutting chip in milling, for instance) and may damage the measurement equipment. In such a case, an off-line error 

compensation technique looks more reasonable; it is aimed at adjusting the target trajectory in accordance with the errors to be 
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compensated and the geometric model used in the robot controller [7, 13]. It is evident that the efficiency of the latter approach is 

quite sensitive to the model completeness and the accuracy of its parameters. 

To achieve desired degree of accuracy, the manipulator model should be calibrated for each particular [14, 15]. In modern 

robotics, there exist a number of techniques that allow user to identify geometric and elastostatic parameters of either serial or 

parallel manipulators. In general, classical calibration procedure contains four basic steps: modeling, measurement, identification 

and implementation [16]. The first step is aimed at development of a model, which is accurate enough and also is suitable for the 

identification (i.e. without redundant parameters that can cause numerical problems). Relevant techniques are usually based on 

different parameterization methods of robot geometry that produce obviously complete (but redundant) models that are subject to 

further reduction. In early works of Hollerbach [17], Veitschegger and Wu [18],  the Denavit-Hartenberg (D-H) parameterization 

was used, which describes the link-to-link transformations via 4 geometric parameters only that does not guaranty the model 

completeness in general case. Later, Hollerbach et. al. [19]  and Hayati et. al. [20, 21] modified the D-H approach by utilizing 5 

parameters to describe these transformations. Further developments led to models with 6 parameters per transformation, they 

have been used by Stone [22] and Whintey et. al. [23]. Any of these parameterizations can be used for geometric modeling; 

however to be suitable for calibration, the number of the parameters should be non-redundant. In practice, the maximum number 

of the identifiable geometric parameters is evaluated using so-called POE formula [24, 25].  

In the manipulator stiffness modelling, there are three main approaches: the Finite Element Analysis (FEA), the Matrix 

Structural Analysis (MSA), and the Virtual Joint Method (VJM). The most accurate of them is the FEA-based technique  [26], 

which allows presenting manipulator components with their true shape and dimension. However, this method is usually applied at 

the final design stage because of the high computational expenses [27]. The MSA method [28] incorporates the main ideas of the 

FEA, but operates with rather large elements – 3D flexible beams. This obviously leads to the reduction of the computational 

efforts, but does not eliminate the disadvantages of FEA. And finally, the VJM method [29-32], is based on the extension of the 

traditional rigid model by adding the virtual joints (localized springs), which describe the elastic deformations of the links, joints 

and actuators. This technique provides reasonable trade-off between the model accuracy and computational complexity, which 

will be further used in this paper.  

At the following step, the measurement data are obtained that are required for the identification equations. These data can be 

gotten using open-loop and closed-loop methods. The first approach provides the Cartesian coordinates of the reference point(s) 

using external measurement system (laser tracker or coordinate measurement machine, for instance). The second approach uses 

some physical constraints imposed on the end-effector (by fixing the reference point or assuming that it belongs to a plane, for 

instance) that create an auxiliary closed-loop providing the desired measurement data. In practice, both approaches are used. For 

example, Nubiola and Bonev [33], Bai et. al. [34], and Klimchik et. al. [35] used the laser tracker systems for geometric and 

elastostatic calibrations. An alternative technique was used by Takeda et. al. [36] who utilized the double ball-bar system for 

calibration in-parallel actuated mechanisms. The end-effector plane constraints were used by Ikits and Hollerbach [37] to 

calibrate a serial anthropomorphic manipulator.  

The next step, identification, is aimed at tuning the model parameters in accordance with the experimental data. It should be 

mentioned that in the literature there exist different algorithms to solve this problem, which differ in the type of original 

measurement data (Cartesian coordinates, distance to the reference point/line, end-effector orientation, etc.) and numerical 

optimization techniques (gradient search, simulated annealing, genetic algorithms, etc.). Some of them are implemented in ROSY 

software [38], which can be applied for calibration of both serial and parallel robots using measuring tool with two digital CCD 

cameras. An alternative geometric parameter identification method that is based on a laser-ranger attached to the end-effector was 

used in [39].  In [40], dedicated differential techniques were applied that use measurement data from structured laser module and 

stationary camera in order to estimate parameters of 7-DOF humanoid manipulator arm. In [41], the authors applied a 

backpropagation neural network to compensate the joint errors of the neurosurgical robot system. Santolaria et.al. [42] utilised the 

ball bar gauge measurement device and identification technique whose objective function includes terms that are regarding 

repeatability and measurement accuracy. To improve the static positioning accuracy of the PA10-6CE robot, in [43] a 

30-parameter model incorporating elastostatic ones has been used. The screw measurement method that utilizes laser tracker with 

an active target and identification procedure that is based on circle point analysis was used in [44] to identify the kinematic 

parameters of an industrial robot. In [45], the authors presented a 12-parameter error kinematic model for the three linear 

actuators of the Gantry-Tau robot and used three types of measurement equipments (laser interferometers, linear encoders and 

double-ball bars) to calibrate the linear actuators. 

The last step, implementation, deals with modification the robot control software in accordance with the parameters identified 

at the previous step. However, in practice, commercial robot software is not opened and rather limited number of manipulator 

parameters can be modified directly (to simplify direct and inverse kinematics, it is usually assumed that a number of joint axis 

are strictly parallel or orthogonal). For this reason, the most common technique is the modification of the robot control program 

(i.e. adjusting of the robot control inputs related to the target trajectory), which can be also treated as the compensation of the 
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difference between nominal and real parameters identified from the experimental study . On this level it is not supposed to use any 

additional measurement equipment (in contrast to general compensation strategies described above). To compensate manipulator 

positioning errors, both on-line and off-line methods can be applied. The simplest approach here is so-called the “mirror” 

technique that has been applied in [7, 46] to compensate the compliance errors. The modification of this method proposed by 

Klimchik et. al. [4, 13] is able to take into account non-linear properties of the geometric and elastostatic model. 

To improve identification accuracy, it is possible to include an additional step into the calibration procedure that is aimed at 

selection of optimal measurement configurations (it can be treated as design of calibration experiments). This idea has been used 

by a number of authors and allowed them to reduce calibration errors without increasing the cost of experiments. In particular, 

Borm and Menq [47] showed that proper selection of measurement configurations is more important for the identification 

accuracy than simply increasing the number of measurements m that yields the improvement factor 1 m  [48]. It should be 

mentioned that even for fully automated measurement systems [49, 50] where the cost of each experiment is relatively low, this 

issue remains important because it is more efficient if the measurement configurations are selected properly. For this reason, there 

are a number of works devoted to the optimal measurement configurations selection that are based on different criterion and 

employ some techniques known from the classical design of experiment theory [48]. For example, Khalil et. al. [51] determined 

the set of optimal measurement configurations by minimizing the condition number of the observation matrix. Nahvi and J. M. 

Hollerbach [52] used the noise amplification index to find the measurement configurations. Daney [53] used the constrained 

optimization algorithm based on the minimization of the singular values product for Gough platform calibration. In [54], the idea 

from D-optimality criteria has been used to quantify optimal measurement configurations for a general nR planar manipulators. 

Zhuang et. al. [55] applied simulating annealing to find measuring configurations that are optimal with respect to two considered 

performance measures. In some works, to qualify sets of measurement configurations, the robot positioning accuracy after 

calibration has been used as a performance index [56, 57].  

It should be mentioned that calibration of the elasto-static model is much more difficult compared to the geometric one. For a 

simple case, when only elasticity of the actuated joints is taken into account, an efficient approach has been proposed in [58, 59], 

but this simplification does not allow describing some important deflections of the end-effector. More sophisticated model 

describing both  the joint and link elasticity can be developed use CAD-based technique proposed in our previous work [60]. 

However, this model includes huge number of parameters that cannot be identified separately using conventional measurement 

data (describing end-effector deflections caused by external force/torque). It means that from mathematical point of view, this 

technique may produce redundant models that are not suitable for calibration. For instance, attempts to solve the identification 

problem for the whole set of the elastostatic parameters (258 for 6 d.o.f. manipulator) leads to the fail of the numerical routines 

that is caused by singularity of the relevant observation matrix.  

As follows from literature review, similar problem is also known in geometric calibration where the concept of 

complete-irreducible-continues model has been introduced and relevant algebraical tools for the model reduction have been 

developed [61-63]. However, in elastostatic calibration there is an additional difficulty caused by high number of relatively small 

parameters for which the measurement noise impact is very essential. According to our experience, even for non-redundant 

models, the identification results may violate fundamental physical properties of the stiffness matrices, such as 

positive-definiteness and symmetry, and are not acceptable for the compliance error compensation (more details are given in 

Section 3.2 presenting a motivation example). For this reason, this paper introduces a new notion of practical identifiability and 

proposes corresponding model reduction methods that allow obtaining reliable results in real industrial environment. 

To address the above mentioned problem, the remainder of the paper is organised as follows. Section 2 presents the stiffness 

modelling background. Section 3 describes the elastostatic calibration procedure and contains a motivation example allowing us 

to define the research problems. In Section 4, the developed model reduction methods are presented. Section 5 contains 

application examples that illustrate advantages of the proposed technique. And finally, Section 6 summarises the main 

contributions of the paper.  

2 Manipulator stiffness modeling background 

Let us consider elastostatic model of a general serial manipulator, which consists of a fixed “Base”, a serial chain of flexible 

“Links”, a number of flexible actuated joints “Ac” and an “End-effector” (Figure 1). It is assumed that all links are separated by 

either rotational or translational joints. Such architecture can be found most of industrial serial robots.  

In order to evaluate the stiffness of the considered manipulator, let us apply the virtual joint method (VJM), which is based on 

the lump modelling approach [64, 65]. According to this approach, the original rigid model should be extended by adding virtual 

joints (localized springs), which describe elastic deformations of the links. Besides, virtual springs are included in the actuated 

joints, in order to take into account the stiffness of the control loop. Under these assumptions, the kinematic chain can be 

described by the following serial structure:  
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(a) a rigid link between the manipulator base and the first actuated joint described by the constant homogenous 

transformation matrix 
BaseT ; 

(b) several flexible actuated joints described by the homogeneous matrix function 
Joint Ac( )i i iq +T , which depends on 

the actuated joint variable iq  and the virtual joint variable 
Ac

i that takes into account the joint compliance;

(c) a set of rigid links, which are described by the constant homogenous transformation matrices 
Link

i
T ; 

(d) a set of  6-d.o.f. virtual joints that take into account the link flexibility and are described by the homogeneous matrix 

function 
VJM Link( )i

T θ  which depends on the virtual joint variables Link x y z φx φy φz( , , , , , )i i i i i i i     =θ  corresponding 

to the translation/rotation deflexions in/around the axis x, y, z; 

(e) a rigid link from the last joint to the end-effector, described by the constant homogenous matrix transformation 

ToolT . 

...
LinkAc LinkAc

Base End-effector

...

Link

Ac Rigid Link Link

Link

6-d.o.f.

spring
6-d.o.f.

spring

6-d.o.f.

spring

a) kinematic model b) VJM model

Flexible links

Actuated joints

w w

Virtual springs

Figure 1 Serial manipulator and its VJM model 

In the frame of these notations, the final expression defining the end-effector location subject to variations of all joint 

coordinates may be presented as the product of the following homogenous matrices and matrix functions 

( )Base Joint Ac Link VJM Link Tool

1

( )
n

i i i i i

i

q 
=

 
=  +    

 
T T T T T θ T (1) 

where n  is the number of links/joints, and the components 
Base Joint Link VJM Tool, , (.), , (.),i i

T T T T T  may be factorized with respect to 

the terms including the joint variables (in order to simplify computing of the derivatives). For further convenience, after 

extraction from the homogeneous matrix T  rotation and translation components [66], the kinematic model can be rewritten in 

more conventional form   

( , )=t g q θ  (2) 

where (.)g  denotes relevant vector function, the vector T( , )=t p φ  defines the end-effector position T( , , )x y z=p  and 

orientation 
T

x y z( , , )  =φ , the vector T

1 2 n( , , ..., )q q q=q  aggregates all actuated coordinates, the vector 
T

2 nθ1( , , ..., )  =θ  collects all virtual joint coordinates, and 
θn  is the number of the virtual joints. It should be noted that here 

the values of coordinates q  are completely defined by the robot controller, while the values of the virtual joint coordinates θ

depend on the external loading applied to the robot end-effector. 

To take into account manipulator stiffness properties, let us assume that variations in the virtual joint variables θ  generate the 

force/torque applied to the corresponding links that are evaluated by the following linear equation (it can be treated as a 

generalised Hooke's law for the manipulator) 
θ θ= τ K θ , where 

T

θ θ,1 θ,2 θ,nθ( , , ..., )  =τ  is the aggregated vector of the virtual 

joint reactions, 
θ θ,1 θ,2 θ θ,n( , , ..., )diag=K K K K  is the aggregated virtual spring stiffness matrix, and 

θ,iK  is the spring stiffness 

matrix of the corresponding link/joint. Further, let us apply the principle of virtual work assuming that the joints are given small, 

arbitrary virtual displacements Δθ  in the equilibrium neighbourhood. Then, the virtual work of the external wrench w  applied 

to the end-effector along the corresponding displacement 
θΔ Δ= t J θ  is equal to T

θ )·( Δw J θ , where 
θ ( , ) /f=  J q θ θ  is the 

kinematic Jacobians with respect to the virtual variables θ , which may be computed from (2) analytically or semi-analytically, 

using the factorization technique proposed in [64]. On the other hand, for the internal forces 
θτ , the virtual work includes only 

one component T

θ Δ− τ θ . Therefore, since in the static equilibrium the total virtual work is equal to zero for any virtual 

displacement, the equilibrium conditions may be written as 

T

θ θ =J w τ (3) 

This gives additional expressions describing the force/torque propagation from the joints to the end-effector that should be 

considered simultaneously with the geometric equation (2). 

Combining further the virtual joint reaction equation 
θ θ= τ K θ , the equilibrium condition (3) and the linearized geometric 

model 
θΔ Δ= t J θ , it is possible to write statics equations 
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T

θ θ θ; 0=  −  =J t w J K θθ (4) 

describing elastostatic properties of the considered manipulator. In these equations, the end-effector displacement Δt  is treated 

as the model input and the external wrench w  is the model output, which corresponds to the representation of the manipulator 

stiffness matrix in the following form 

C·Δ=W K t (5) 

where 
CK  is the desired Cartesian stiffness matrix of the considered manipulator for given robot configuration q . To find this 

matrix, equations (4) may be presented in the matrix form 

θ
T

θθ

     
 =     −  



  

0 J w t

θ 0J K
(6) 

and solved for W . This transformation  yields the following force-deflection relation 1 T

θ θ θ Δ−   =J K J w t  that allows us to 

express the manipulator Cartesian stiffness matrix as 

( )
1

1 T

C θ θ θ

−
−=  K J K J (7) 

This expression allows us to compute the Cartesian stiffness matrix assuming that the matrix (1) (2)

θ θ θ( , , ...)diag=K K K , defining 

elastostatic properties of the manipulator links/joins is given. However, in practice, the matrices  (i)

θ , 1,2,...i =K  are unknown 

and should be identified from relevant experiments.  However, there are a number of numerical problems that may arise here that 

are in the focus of the remaining parts of the paper. 

3 Problem of elastostatic parameters identification 

3.1 Methodology of elastostatic identification 

To estimate the desired matrices describing elasticity of the manipulator components (i.e., compliances of the virtual springs 

presented in Fig. 1), the elastostatic model (5) should be rewritten as 

( )(i) (i) (i)T

θ θ θ1
·

n

i=
=  J k Jt w (8) 

where t  is the vector of the end-effector displacements under the loading w , the matrices (i) (i) 1

θ θ( )−=k K  denote the link/joint 

compliances that should be identified via calibration, and the matrices (i)

θJ  are corresponding sub-Jacobians obtained by the 

fractioning of the aggregated Jacobian 
(1) (2)

θ θ θ[ , ,...]
T TT =J J J . For the identification purposes, this expression should be transformed 

into more convenient form, where all desired parameters (elements of the matrices (i)

θ , 1,2,...i =k ) are collected in a single vector 
(1) (1) ( )

θ11 θ12 θ66( , ,... )nk k k=π . It yields the following linear equation  

( , | )·= A q wt π π  (9) 

where 

1 21 2( , | ) [ , ,...., ]T T

mm

T=A q w J J w J J w J J wπ  (10) 

is so-called observation matrix that defines the mapping between the unknown compliances π  and the end-effector 

displacements t  under the loading w  for the manipulator configuration q . Below, for the presentation convenience this 

matrix will be also referred to as 
A , where the subscript defines the parameters set for which the observation matrix is 

computed. Here, the vectors 
iJ  are the columns of the matrix 

θJ , i.e. 
θ 1 2[ , ,...., ]m=J J J J . 

Taking into account that the calibration experiments are carried out for several manipulator configurations defined by the 

actuated joint coordinates , 1,j j m=q , the system of basic equations for the identification can be presented in the following form 

( , | ) ; 1· ,j jjj j m =+=t π π εA q w  (11) 

where jε  denotes the vector of measurement errors. For further convenience, let us also present the system of m  equation (11) in 

a matrix form 

·( , | )a a aaa= +A q wt π π ε (12) 
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where subscript "a" indicates that matrices/vector aggregate corresponding components for m  configurations. Below, the matrix 

function ( , | )a aaA q w π  will be also referred to as 
a


A .  Further, using these notations and assigning proper weights for each 

equation, the identification can be reduced to the following optimization problem 

1
( ) ( ) min

m T T

j j j jj
F  =
= −  − →

π
A π t Aη tη π (13) 

where η  is the matrix of weighting coefficients that normalizes the measurement data, ( , | )jj j = A q wA π . This minimization 

problem yields the following solution 

( ) ( )
1

1 1
ˆ ·

m mT T T T

j j j jj j   

−

= =
=  π A A A tη η η η . (14) 

If the measurement noise is Gaussian (as it is assumed in conventional calibration techniques), expression (14) provides us with a 

unbiased estimates for which ( )ˆE =π π . Corresponding covariance matrix evaluating the dispersion of the parameter estimate π̂

from one identification session to another can be computed as follows  

( ) ( )
1 1

2

1 1 1
ˆcov( )

m m mT T T T T T T

j j j j j jj j j     

− −

= = =
=   η η η η η η ηπ A A A Σ A ηA A (15) 

where the matrix  2 ( · )TE=Σ ε ε  describes the statistical properties of the measurement errors. 

It can be proved [67] that the best results in terms of the identification accuracy are achieved if 1−=η Σ . It leads to the 

following covariance matrix of the manipulator compliance parameters  

( )
1

1

1
ˆcov( )

m T T

j jj  

−
− −

=
= π A Σ Σ A (16) 

Such assignment of the weighing coefficients η  also allows us to avoid the problem of different units in the objective function 

(13), which arises in straightforward application of the leas-square technique to the robot parameters identification if the 

measurement system provides both position and orientation data. It should be noted that this particularity is usually omitted in 

conventional robot calibration. Another way to improve the identification accuracy is related to the proper selection of 

manipulator measurement configurations  , 1,j j m=q  that is also known as the calibration experiment planning [68], which 

directly influences on the observation matrices ( , | )j jA q w π  and on the covariance matrix (16). 

It is clear that expression (14) gives reliable estimates of the parameters π  if and only if the matrix 
1

1

m T T

j jj  

− −

= A Σ Σ A  is

invertible. It leads to the problem of the parameter identifiability that have been studied by a number of authors for the problem of 

geometrical calibration [62, 63]. Relevant techniques are based on the information matrix rank analysis (via either SVD- or 

QR-decomposition). However, in real industrial practice where the measurement not is non-negligible, the identifiable 

parameters are not equivalent in terms of accuracy (both absolute and relative) and expression (14) can give rather surprising 

results for some of them. This motivates revision of the above mentioned notion (parameter identifiability) and its extension 

taking into account the identification accuracy defined by the covariance matrix (16). In the following sub-sections, the notion of 

practical identifiability is introduced and a motivation example is presented, which illustrates potential problems that may arises 

in the manipulator elastostatic calibrations if conventional techniques are applied.  

3.2 Difficulties in elastic parameters identification 

To illustrate the problems that may arise in identification of the manipulator elastostatic parameters, let us consider a 

numerical example that deals with a single link of the Orthoglide manipulator (Figure 2). Its compliance matrix has been obtained 

in [64] and is equal to  

8

5 4

5 4

3

4 3

4 3

4.50·10 0 0 0 0 0

0 8.01·10 0 0 0 3.98·10

0 0 3.64·10 0 1.71·10 0

0 0 0 3.76·10 0 0

0 0 1.71·10 0 1.09·10 0

0 3.98·10 0 0 0 2.65·10

−

− −

− −

−

− −

− −

 
 
 

− =
 
 

− 
  

k  (17) 

where the values are expressed in SI units (N, m, rad). 
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(a) Principal link of Orthoglide manipulator (b) Architecture of Orthoglide manipulator

W

Figure 2 Manipulator link considered in the motivation example 

Let us simulate the calibration process assuming that the matrix (17) should be estimated by means of the identification 

algorithm described above, where the input data are generated by means of virtual experiments. In the frame of these experiments, 

the link is assumed to be fixed on one side and the external loading 
jw  is applied on the another side. For each loading, the 

corresponding deflection vector is computed in accordance with expression ·j j j= + k w εt , where 
jε  is the measurement noise. 

In accordance with the physical properties of the examined link and to conserve the linearity of the force-deflection relation, the 

loading magnitude has been limited by 10N  for the forces and 10Nm  for the torques. The measurement noise magnitude has 

been defined as  25p m =  for the positional components and as 0.25mrad =  for the  orientation components (these values 

correspond to the precision of the best industrial measurement systems that currently are available on the market). These virtual 

experiments has been carried out six times, in order to obtain sufficient number of equations for the identification of 36 desired 

parameters 
ijk . 

For these virtual experiments, the properties of the observation matrix used in the identification expression are quite good: 

rank is equal to 36 and the condition number is 1.00. Nevertheless, the identification are rather "surprising": the obtained 

compliance matrix essentially differs from the original one and is  

8 7 7 8 7

7 7 7 7

7 7 7 7

7 6 7

8.71·10 1.86·10 1.59·10 7.72·10 1.15·10

4.53·10 2.07·10 1.98·10 1.14·10

2.29·10 3.76·10 2.25·10 1.13·10

1.42·10 1.83·10 7.05·1
ˆ

0

-8

-5 -4

-5 -4

-3.05·10

8.05·10 3.98·10

3.65·10 -1.71·10

3

− − − − −

− − − −

− − − −

− − −

− −

−

−
=

−
k

6 6

6 6 6 6

6 6 7 8

1.11·10 4.12·10

3.27·10 1.23·10 3.99·10 5.07·10

2.61·10 1.06·10 2.81·10 4.58·10

-3

-4 -3

-4 -3

.76·10

-1.68·10 1.09·10

3.97·10 2.65·10

− −

− − − −

− − − −

 
 
 
 
 
 

− 
 − − − 

(18) 

Detailed comparison analysis of the original matrix k  and its estimate k̂  allows us to make the following conclusions 

concerning the harmful impact of the measurement noise on the identification of the elastostatic parameters in real industrial 

environment: 

(i) the obtained compliance matrix k̂  may lose the properties of positive-definiteness, which completely contradicts 

to the common physical sense that is based on the energy-based definition of 1−
k  (in particular, in the above 

example, 11
ˆ 0k  is not acceptable);

(ii) the obtained matrix k̂  may be non-symmetric, which also contradicts to the physical sense (for instance, 53k̂  and 

35k̂ , which corresponds to non-zero elements of k , are not equal and differ by 2%); 

(iii)  for some small elements, the identification accuracy may be extremely low (for example the element 11k̂ , which is 
3~ 10  times less than 22k̂  and 33k̂  has been identified completely wrongly); 

(iv) in the obtained matrix k̂ , the number of non-zero elements is redundant compared to the original matrix k ; 

moreover, it is difficult to distinguish small elements ˆ
ijk  from so-called zero elements, which correspond to exact

zeros in k  induced by the physical properties of the examined link (for instance, the element 21k̂  that should be

equal to zero by definition is the same order of magnitude as 11k̂ , which should be small but strictly positive);

(v) for the remaining elements, whose magnitude is high enough, the identification errors are quite acceptable (from 

0.01% to 1.67%), but they should be further reduced by increasing number of the experiments.  

It should be noted that for essentially lower measurement noise (with 
p  and   that are 100 times smaller) the above 

mentioned problems do not exist, however such measurement precision is not achievable in industrial environment at present. 

Hence, as follows from this motivation example, the whole set of 36 elastostatic parameters  ijk  composing the 6 6  matrix

k  cannot be estimated using commercially available measurement systems. The main reason for this difficulty is that, for some 
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elements, corresponding deflections under the admissible loading are comparable with the measurement noise. To detect these 

indistinct elements, a simple indicator can be applied showing parameter-to-noise ratio (which is similar to signal-to-noise ratio 

in communication): 

0.35 0.74 0.64 0.31 0.46

1.81 0.83 0.79 0.46
ˆ| | 0.91 1.50 0.89 0.45

0.06 0.73 0.28 0.44 1.64

1.31 0.49 1.60 2.02

1.04 0.42 0.11 0.02

ij

ij

0.12

322 1593

146 684

1504

-67.3 436

159 1060

k



 
 
  
 = 
   
 
 
 

(19) 

where 
ij  is a corresponding element of the relevant covariance matrix. As follows from these numerical values, 27 of 36 desired 

parameters can be hardly estimated from the experimental data with realistic measurement noise. Only for 9 parameters 
22k , 

26k , 

33k , 
35k , 

44k , 
53k , 

55k , 
62k , 

66k  the ratio is high enough (more than 50), so they can be treated as "practically identifiable". It 

should be stressed that similar indicators computed using exact values of 
ijk  (which are unknown in practice) give similar result 

0.18 0 0 0 0 0

0 320 0 0 0 1592
| | 0 0 146 0 684 0

0 0 0 1504 0 0

0 0 68.4 0 436 0

0 159 0 0 0 1060

ij

ij

k



 
 
  
 = 
   
 
 
 

(20) 

allowing us to detect the same set of small or zero parameters whose identifiability is questionable. On the other side, the impact 

of these parameters on the elastostatic deflections is so small that they can be reasonably excluded from the desired stiffness 

model. These results confirm importance of the above pointed problems, which below are considered in details. 

Summarising theoretical background and simulation results presented above, it is possible to make the following conclusions: 

(i) complete elastostatic model of robotic manipulator includes huge number of parameters (258 for conventional 

6 d.o.f. serial robot), whose simultaneous identification in presence of measurement noise is rather difficult or even 

impossible; 

(ii) before applying the least-square identification technique , the manipulator elastostatic model should be reduced and 

redundant parameters should be eliminated, in order to ensure invertibility of the information matrix; this step can 

be performed using techniques similar to those developed for the geometrical calibration; 

(iii) among the remaining non-redundant parameters, there are a number of non-significant ones, whose absolute values 

are relatively small, the identification accuracy is quite low and the impact on the compliance of the of the entire 

manipulator is almost negligible; these parameters can be treated as "practically non-identifiable" and should be 

also eliminated from the model, but relevant techniques are not available yet;   

(iv) while developing relevant techniques allowing detection of "practically identifiable" parameters, it is prudent to 

take into account some specific properties of the compliance matrices induced by the elasticity physics such as the 

compliance matrix symmetry, presence of strictly zero elements (matrix sparseness), positive-definiteness, etc. 

Hence, to obtain reliable stiffness model that is suitable for calibration, and that contains only significant and practically 

identifiable parameters while describing manipulator elastostatic properties sufficiently good, it is necessary to develop dedicated 

model reduction techniques and relevant rules allowing us to minimise number of parameters to be estimated and to reconstruct 

the original VJM-based model from these data taking into account mathematical relations between the model parameters caused 

by their physical sense. 

4 Practical identifiability in manipulator calibration 

4.1 Basic assumptions and terminology 

Let us assume that the vector of desired elastostatic parameters π  should be identified from the set of the linear equations (11) 

whose least square solution is defined by the expression (14), where the observation matrices ( , | )j jA q w π  are computed for 

certain set of measurement configurations  jq  and loadings  jw . Depending on the matrix set  jA , corresponding system 

of linear equations can be solved for π  either uniquely or may have infinite number of solutions. In general, if the information 

matrix is rank-deficient, a general solution of the system (11) can be presented in the following form 
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( )ˆ · ·+ +

   += −π A IB A A λ . (21) 

where the superscript "+" denotes the Moore–Penrose pseudoinverse, 
1

m T T

j jj   =
= η ηA A A ,

1

m T T

j jj   =
=  η ηB A t  and λ

is an arbitrary vector of the same size as π . Using the later expression, all desired parameters contained in the vector π  can be 

divided into the following groups [63]: 

G1:  Identifiable parameters that can be obtained from (21) in unique way and are independent from the arbitrary vector 

λ ;  

G2:  Non-identifiable parameters that cannot be computed uniquely from (21) and can take on any value without 

influence on the right-hand side of the equation (9), they correspond to the zero columns of the observation matrix 

A ; 

G3:  Semi-identifiable parameters that are also cannot be computed uniquely but have influence on the right-hand side of 

the equation (9); they are united in subgroups where a single one can be treated as identifiable if the remaining ones 

are fixed.  

To present typical examples of the parameters belonging to the groups G1, G2 and G3, it is possible to use the ideas similar to 

geometrical calibration. For instance, the elastostatic parameters of the actuated joints and adjacent links are redundant in their 

totality and belong to the group G3. Besides, if the loading direction cannot be altered, a number of parameters belong to the 

group G2 and cannot be identified from the corresponding experimental data.  So, complete and irreducible model should contain 

all parameters from the group G1 and partially parameters of the group G3. More details on issue will be given in Section 4.3.  

In this paper, in contrast to previous works, this classification is enhanced taking into account practical issues related to the 

limited precision of the measurement system. The main idea is to compare the absolute value of the estimated parameter with the 

range of possible fluctuations of the estimate caused by the measurement noise. For computational reasons, it is convenient to 

introduce a numerical indicator similar to the signal-to-noise ratio in communication, which is defined as follows 

ˆ , 1,2,.../i i i i  ==  (22) 

where 
i  is the standard deviation of the parameter estimate  ˆ

i  extracted from the diagonal of the covariance matrix (16). It is

clear that 
i can be treated as the inverse of the relative accuracy, which allows us to avoid the problem of division by zero. In the

following sections this indicator will be referred to as parameter-to-noise ratio. 

Using the above defined indicator, the set of parameters belonging to the group G1 (theoretically identifiable) can be further 

divided into three subgroups: 

G1+:  Practically identifiable parameters, for which the accuracy indicator is high: 0i  + ; this subgroup describes 

principal elastostatic properties of the manipulator and should be certainly included in the reduced model used in 

the identification routines; 

G1-:  Practically non-identifiable parameters, for which the accuracy indicator is low: 0i  − ; this subgroup contains 

non-essential parameters that can be assigned to zero in the VJM-model without essential impact on its precision 

(in practice, the majority of these parameters are nominally equal to zero due to the physical nature of the 

compliance matrices);  

G1~:  Practically semi-identifiable parameters, for which the accuracy indicator is intermediate: 0 0i  − +  ; the 

parameters belonging to this subgroup are practically non-identifiable for the current experimental setup but, 

hypothetically, can be converted into practically identifiable ones by increasing the experiment number, improving 

the measurement precision of by modification of the measurement configurations.  

An open question however is related to justified assigning of the upper and lower bounds 
0
+  and 

0
− . From practical point of 

view that is adopted below, it is reasonable to use 0 5 + =  and 0 2 − = , which is in a good agreement with the quantiles of the 

normal distribution. However, the user may modify these values in accordance with the specificity of the problem of interest. 

The above presented definitions allow us to revise the concept of "suitable-for-calibration" model that in previous works 

included all parameters of the group G1 (this model is also referred to as the "complete and irreducible" one). In this work, this 

model is limited to include only parameters of the subgroup G1+ (practically identifiable) that can be estimated with reasonable 

accuracy and provide good approximation of the original complete model. The following subsections address different aspects of 

model reduction allowing us to obtain the desired model suitable for the elastostatic calibration.  

It should be noted that, in spite of the fact that the main focus of the paper is on the elastostatic modelling, similar ideas can be 

also successfully applied in manipulator geometric calibration. 
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4.2 Model reduction: physical approach ( →π π ) 

Straightforward approach to the manipulator stiffness modelling leads to the exhaustive but redundant number of parameters 

to be identified. For instance, each links is described by a 6 6  matrix that includes 36 parameters that are treated as independent 

ones. However, as follows from physics, number of the pure physical and independent parameters is essentially lower (for a trivial 

prismatic beam, for example, there are only five physical parameters: three describing the geometry and two describing the 

material properties). Hence, there are strong relations between these 36 parameters but this fact is usually ignored in elastostatic 

calibration. Besides, due to fundamental properties of conservative system, the desired compliance matrices should be strictly 

symmetrical and positive-definite. In addition, for typical manipulator links, the compliance matrices are sparsed due to the shape 

symmetry with respect to some axis, but this property is also not taken into account in identification of the elastostatic parameters. 

To take advantages of the compliance matrix properties and to increase the identification accuracy, two simple methods can be 

applied that allows us to reduce the number of parameters to be computed in the identification procedure (14). They can be treated 

as the physics-based model reduction techniques and formalised in the following way.  

M1:Symmetrisation. For all compliance matrices k  to be identified, replace the pairs of symmetrical parameters 

 ,ij jik k  by a single one ,ijk i j .

For each link, this reduction procedure is equivalent to re-definition of the model parameters vector in the following way 

·= π M π (23) 

where the binary matrix M  of size 36 21  describes the mapping from the original to reduced parameter space. It can be proved 

that corresponding basic expression for the identification (9) can be rewritten as  

( , | )·= A q wt π π  (24) 

where ·( , | ) ( , | ) =A q w A w πqπ M  denotes the reduced observation matrix. The later can be also computed as 

θ 1 θ θ 2 θ θ 21 θ( , | ) ,[ ], ...T T T =A q w J ω J w J ω J w J ω J wπ  (25) 

where 
1 2, ,...ω ω  denote the binary matrices of size 6 6  for which non-zero elements (i.e. equal to 1) are located in the following 

way: for the parameter 
l corresponding to the matrix elements ,ijk i j , the non-zero elements are 1ij ji = = . It is clear that 

this idea allows us to reduce the number of links compliance parameters from 36 to 21 (and from  258 to 153 for the entire 6 d.o.f. 

manipulator).  

M2:Sparcing. For all compliance matrices k  to be identified, eliminate from the set of unknowns the parameters 
ijk

corresponding to zeros in the stiffness matrix template 0
k  derived analytically for the manipulator link with similar 

shape.  

To obtain a desired template matrix, is convenient to use any realistic link-shape approximation. For example using the trivial 

beam [69], the desired template can be presented as  

0

* 0 0 0 0 0

0 * 0 0 0 *

0 0 * 0 * 0

0 0 0 * 0 0

0 0 * 0 * 0

0 * 0 0 0 *

 
 
 
 =
 
 
 
 

k  (26) 

where the symbol "*" denotes non-zero elements. It allows further reducing the number of the unknown parameters from 21 to 8, 

taking into account only essential ones from physical point of view. It can be also proved that the template (26) is valid for any 

link whose geometrical shape is symmetrical with respect to three orthogonal axes. But it is necessary to be careful if this property 

is not kept strictly.  

It should be stressed that the actuated joint compliances cannot be identified separately. So, they should be included in the 

compliance matrix of the previous link by means of modification of the corresponding diagonal elements.  

M3:Aggregation. Eliminate from the set of model parameters the ones that corresponds to joint compliances before 

which there is an elastic link; in terms of parameters identifiability the compliance of those joints cannot be split 

from the links.  

Summarizing these methods, it should be mentioned that the above presented approach essentially reduce the number of 

parameters to be identified (by the factor 4.5) but they do not violate such basic properties as the mode completeness, i.e. the 

ability to describe any deflection caused by the external loading. Below, these reduced set of the original model parameters π

10



will be referred to as π . However, the obtained reduced model may still have some redundancy in the frame of entire 
manipulator, where the virtual springs of adjacent joints/actuators cause similar impact on the end-effector deflections under the 
loading. 

To illustrate efficiency of the methods M1 and M2, the identification problem considered in section 3.2 have been solved for 
reduced set of the compliance parameters. It yielded the following result

8

5 4

5 4

3

4 3

4 3

3.05·10 0 0 0 0 0
0 8.05·10 0 0 0 3.98·10
0 0 3.64·10 0 1.71·10 0
0 0 0 3.76·10 0 0
0 0 1.71·10 0 1.09·10 0
0 3.98·10 0 0 0 2.6510

ˆ

·

−

− −

− −

−

− −

− −

 −
 
 

− =
 
 

− 
  

k (27)

which is essentially better compared to (18). In particular, the identification errors for the most of the desired parameters are less 
than 0.4%, i.e. 4 times lower. The only exception is the small element 11k̂ that is still negative and contradicts to the physical
sense. This motivates further efforts to obtain reliable stiffness model whose parameters can be calibrated in real industrial 
environment. 

From the geometrical calibration it is known that in spite of the fact that redundant model is suitable for direct and inverse
computations it cannot be used in identification since the observation matrix does not have sufficient rank. Similar problem arises 
in elastostatic calibration where some stiffness matrix elements of adjacent links/joints are coupled and cannot be identified
separately. The problem of construction complete and irreducible model has been widely studied in geometrical calibration and 
the developed techniques can be adopted for the elastostatic calibration.

4.3 Model reduction: algebraic approach (  →π π )
The physical approach described in the previous sub-section allows us essentially reducing the number of model parameters. 

However, it does not guarantee that the obtained model is suitable for calibrations (i.e. that the model is non-redundant and the 
number of parameters is equal to the observation matrix rank). In practice, the following inequality is often satisfied: 

( )( ) ( ), | dima a arank  A q w π π . To overcome the problem, this sub-section presents some algebraic tools aimed at further 
reduction of the model parameter set from π to π , which ensures full identifiability:

( )( ) ( )( ) ( ), | , | dima A a a a arank rank  = =A q w π A q w π π (28)

These tools are based on the partitioning of the parameters set π into three non-overlapping groups (identifiable, 
non-identifiable and semi-identifiable), which are either eliminated from the model or reduced to ensure the equality (28).

To introduce relevant algebraic technique, let us apply the SVD decomposition and present the aggregated observation matrix
( ), |a a a A q w π as the product of three matrices · · TU ΣV (orthogonal, diagonal and orthogonal, respectively):

( )
( )

( )

 

11 1 1
2

2 2 ' 2
1

' ' '

2

0 0, |
0 0, |

· ·
0

, ,..
0

, |

.

c c

T

T
r n

T
nm r

m

r

m
m m

n









 

   
       
   
       

 
 
  =
 
 
  

U

A q w π V
A q w π 0 V

A q w π V0

U U

0

 
 
 
 
 
 
 
 

(29)

Here 21[ , ,... ]m=U U U U and 21[ , ,... ]v=V V V V are orthogonal matrices of the size m m and n n respectively whose columns 
are denoted as iU and jV ; the second factor Σ is a rectangular diagonal matrix of the size m n containing r positive real 
numbers 1 2, ,... r   in descending order; ( )dim am = t is the number of rows in the observation matrix (i.e. number of
equations used for the identification), ( )dimn = π is current number of the model parameters, and r is the rank of the
aggregated observation matrix, 'm m r= − , 'n n r= − . It is clear that r defines the maximum number of parameters that can be 
identified using given set of manipulator configurations  iq and corresponding wrenches  iw .

Further, after substitution (29) into (12) and left-multiplication by TU , the original system of m identification equations (12)
can be rewritten as
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
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
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      =      
     
      

V U
0 V U

π t

V U0 0

    
     

... ... ...
 

... ... ... 
 
  
 
  (30)

where the number of equation is equal to n and perfectly corresponds to the vector π dimension (it is obvious that n m ).
Taking into account particularities of the sparse matrix Σ (with r non-zero elements only), it is possible to rewrite the system 
(30) in the form

;· · · 1,2,...,

0 ; 1,. .· · ,· .

T
i
T
i

T
i i a

T
i a

i r

i r n

 =

= +

 = 

 = 

UV π t

V π tU
(31)

where the second group of 'm m r= − equations should be excluded from further consideration because relevant residuals do not 
depend on the parameters of interest π (since they are multiplied by zero matrix). It can be proved that · a

T
i  tU 0 for i r if

the measurement vector at does not contain noise. It is also worth mentioning that for real identification problems (with the 
measurement noise), the second group of equations produces constant residuals that cannot be minimised in the least-square
objective (13) by varying the vector of unknown parameters π .

Hence, for the identification of n parameters included in the vector π , a system of r linear equations have been obtained
that cannot be solved uniquely in a general case. Its partial solution can be found by dividing on 0i  each of r linear 
equations · · ·T

i i a
T
i  = V π tU and further straightforward multiplication of the left and right sides by the matrix  1 2 ,. ,, .. rVV V ,

which yields

   

1 1 1

2 2 2
1 2 1 2

/
/,..., · ,..., ·

... ...
,

/

,

T T

T T

r r a

T T
r r r







   
   
    = 
   
   
   

V U
V UV V π V V t

V U

V V (32)

Using the first set of r equations of system (31) one can obtain partial solution of system (30)

( )1
0

1
· ·

r
T

i i i a
i

 −

=

 = π V U t (33)

This allows us to present the general solution (21) as the sum of this partial solution and an arbitrary vector from the subspace with 
the basis 1 2, ,...r r n+ +V V V

1

ˆ
n

o i i
i r


= +

 = +  Vπ π (34)

where i , 1,i r n= + are arbitrary real values.
Hence, as follows from analysis of (31) and (34), depending on the properties of the matrix V , all model parameters π can

be partitioned into three groups: G1 − identifiable parameters that are uniquely defined by the equation (34) and do not depend on 
the arbitrary values i , for these parameters the corresponding row of the sub-matrix 1[ ,..., ]r m+V V is equal to zero; G2 −
non-identifiable parameters that do not effect the residuals of system  (31), for these parameters the corresponding row of the 
sub-matrix 1[ ,..., ]rV V is equal to zero; G3 − semi-identifiable parameters that effect the residuals but cannot be identified 
uniquely, couplings between these parameters is defined by the vectors iV , 1,i r= . Thus, based on this decomposition, the 
algebraic-based model reduction techniques can be formalised in the following way:

M4a:Partitioning. Divide the reduced set of the model parameters π into three non-overlapping groups G1, G2 and G3 
in accordance with the following rules applied to all i  , 1,dim( )i = π :
Rule 1: Include the parameter i  into the group G1 if the ith row of the sub-matrix 1[ ,..., ]r m+V V is equal to zero;
Rule 2: Include the parameter i  into the group G2 if the ith row of the sub-matrix 1[ ,..., ]rV V is equal to zero;
Rule 3: If the parameter i  is not included in G1 or G2, include it in the group G3.

M4b:Elimination. Eliminate from the set of unknowns (model parameters) non-identifiable parameters that correspond 
to group G2. 
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After application of these methods, the current set of model parameters π is reduced to the sub-set  2\ Gπ π that does not 
influence the rank of the observation matrix, i.e.  ( )( ) ( )( )2\, | , |a a a G a a arank rank= A q w π π A q w π . Nevertheless, relevant
model may be redundant yet, i.e.  ( )( )  ( )2 2\, | dim \a a a G Grank  A q w π π π π . It should be noted that 

( )( ) ( )1 1, | dima a a G Grank =A q w π π while ( )( ) ( )3 3, | dima a a G Grank A q w π π . So, another, and the most difficult problem 
that arises after M4, is to define the sub-set of identifiable parameters inside of 3Gπ (the remaining ones should be set to constant 
values).

It is clear that the above mentioned problem has infinite number of solutions. Let us presents an algorithm that is able to split 
the set of parameters 3Gπ into the non-overlapping groups of coupled parameters 3

j
Gπ and than choose identifiable one from the 

group based on their physical scene:
M5a:Splitting. Split the set of semi-identifiable model parameters 3Gπ into the non-overlapping groups of coupled 

parameters 3
j
Gπ for which the following conditions are satisfied:

(a) 1 2
3 3 3 3.... m

G G G G=π π π π
1 2

3
m

G G G G3 3 3G G G G3 3 3π π π π
1 2

π π π π
1 2

G G G Gπ π π πG G G G3 3 3G G G G3 3 3π π π π3 3 3G G G G3 3 3 ....G G G G....π π π π....G G G G.... , 3 3
i j
G G i j=  π π3 3
i j
G G3 3G G3 3 =  π π
i j
π π

i j
G Gπ πG G3 3G G3 3π π3 3G G3 3 ;

(b) ( )( ) ( )( )( )3 3 3 31: dim( ), | , | \i i i i
a a a G a a a G G Grank ran jk j=  =A q w π A q w π π π

(c) ( )( ) ( )( )( )3 3 3 3) , 1, | , : i (| d m )i i j j
a a a G a a a G G Gk i jrank rank k   =A q w π A q w π π π

In practice, when this grouping is not evident, it is possible to use numerical technique, which is based on the 
SVD-decomposition of the reduced observation matrix ( )3, |a a a GA q w π . Using similar notation, the matrix V can be presented 
as  1 2, ,...=V VV in accordance with the rank of ( )3, |a a a GA q w π . So, the couplings between the elements are defined by the 
sub-matrix  1 2 ,. ,, .. rVV V . One of the easiest ways to find the desired couplings is to compute the matrix

 ( )
1

1* 2
1 2 ,...,

...
,

T

T

r

T
r

−

 
 
 = 
 
 
 

V
VL V

V

VV (35)

where the symbol “*” denotes operation of the row selection that conserve the matrix rank. The latter leads to a full-rank square 
matrix presented above as the firs term of (35). It should be noted that this operation is not unique, nevertheless, it allows to obtain 
the couplings between the model parameters described by the sparse matrix L . Then, the desired groups of parameters can be 
easily detected after transformation L into the block-diagonal form. 

Using the above presented idea, the next step can be presented as follows:
M5b:Selection. In each group of parameters 3

j
Gπ , specify ( )( )3, | i

j a a a Grankn = A q w π parameters that will be treated as 
identifiable

M5c:Assigning. In each group of parameters 3
j
Gπ , fix remaining ( ) ( )( )3 3, |dim j i

j G a a a Granm k= −π A q w π parameters to 
some constants; these parameters will be treated as non-identifiable

It should be noted that the sequence of methods M5b and M5c is not strict; identifiable and non-identifiable parameters can be 
selected and fixed iteratively, using the methods M5b and M5c several times. After application of the methods M5a, M5b and 
M5c, the set of parameters 3Gπ is split into two subsets: the subset of the parameters that will be treated as identifiable 3

id
Gπ and 

subset that will be treated as non identifiable ones 3
ni
Gπ and will be assigned to some constant values ( 3

ni
G const=π ); i.e. 

3 3 3
id ni
G G G=π π π
id ni
G G G3 3 3G G G3 3 3π π π
id ni
π π π

id ni
G G Gπ π πG G G3 3 3G G G3 3 3π π π3 3 3G G G3 3 3=π π π= , 3 3

id ni
G G =π π3 3
id ni
G G3 3G G3 3 =π π
id ni
π π

id ni
G Gπ πG G3 3G G3 3π π3 3G G3 3 .

As the result of algebraic approach, the complete set of parameters π is reduced to π , It includes all parameters from the 
group G1 and assigned-to-be-identifiable ones from the group G3. It is clear that the presented algebraic methods do not violate
the model completeness, i.e. ( )( ) ( )( ), | , |a a a a a arank rank =A q w π A q w π .

4.4 Model reduction: statistical approach (  →π π )
As follows from relevant study and above presented example, rigorous reduction methods based on the physical and 

mathematical properties of the compliance matrix are rather limited if the measurement noise is non- negligible. This gives us 
reasons to develop some heuristic rules that take into account the measurement noise impact on the identification accuracy. It is 
clear that extremely low accuracy is not acceptable, but often corresponding parameters are so small that their influence on the 
end-effector deflections is very small. This supports an idea for heuristic reduction of small model parameters but leaving an open 
problem of their further reconstruction in the VJM-model using some empirical or semi-empirical relations induced by 
mathematical relations between the stiffness matrix elements.

To take into account the relative accuracy of the parameter estimates, it is convenient to use a simple indicator showing 
parameter-to-noise ratio (22) introduced in sib-section 4.1. It is evident that it should be applied only to those parameters that 
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belong to the group G1 (theoretically identifiable). Using this index, a heuristic model reduction technique allowing us to 

distinguish the practically identifiable parameters from the hardly-identifiable ones can be formalised as follows:  

M6:Neglecting. 

Step 1: Using complete but non-redundant model derived after application of physical and algebraic model 

reduction techniques, compute estimates of the desired parameters ˆ π  and their covariance matrix ( )ˆcov π  by

means of equations (14) and (16);  

Step 2: Using the parameters estimates ˆ π  and the diagonal elements of the covariance matrix ( )ˆcov π , compute

the parameter-to-noise ratios 
i in accordance with expression (22);

Step 3. For all compliance matrices k  to be identified, eliminate from the set of unknowns the parameters 
ijk  for 

which parameter-to-noise ratios 
ij is lower the user defined threshold: 0ij  + .  

This method allows us to eliminate from the model the parameters whose identification accuracy is comparable with the noise 

impact and, strictly speaking, these values cannot be considered as reliable estimates of 
ijk . 

As follows from our experience, it a very powerful method with two useful features: (i) elimination of small (but theoretically 

non-zero) parameters, and (ii) detection of elements corresponding to zeros in the matrix template (see method M2), if the latter 

has been defined rather carefully. These conclusions are clearly confirmed by the numerical example presented in section 3.2 (see 

(19) and (20)). In this example, it is worth to pay attention to the element 11k̂  that is really small for the majority of manipulator

links (because the link length is always essentially higher compared to the cross-section dimensions). Elimination of this 

parameter is really negligible for the manipulator Cartesian stiffness matrix (7) that integrates impact of all compliance elements. 

Nevertheless, after identification, the parameter 11k̂  can be reconstructed approximately using non-zero elements of the

compliance matrix and some relations between ˆ
ijk  induced by physics. The last problem is currently under study but is not in the 

scope of this paper. 

In conclusion of this section, it should be noted that the proposed methods M1-M5 allow us essentially reducing the number of 

model parameters while retaining the model accuracy. For example, for 6 d.o.f. manipulator, the number of parameters is reduced 

from 258 to 42 allowing us to obtain an adequate stiffness model in real industrial environment. 

5 Illustrative example 

To illustrate utilisation and the efficiency of the developed model reduction technique this section proposes detailed example 

that describes step-by-step application of the proposed model reduction methods. It deals with the identification of elasto-static 

parameters of a 6 dof manipulator.    

5.1 Basic assumptions and model description 

Let us consider a typical 6 dof serial manipulator with 6 rotational actuated joints whose geometric model is presented in 

Figure 3. It is assumed that all manipulator components (both actuated joints and links) are subject to the elastic deformations 

under the influence of the external force/torque. For this manipulator, a complete elastostatic model contains 258 parameters that 

describe compliance of 7 links (defined by 6 6  stiffness matrices) and 6 actuated joints (defined by stiffness coefficients).  

1q

2q

3q
4q

5q
6q

0l
1l

2l
5l

3l

0x
0y

0z

4l

6l

Figure 3 Kinematic model of the considered 6 dof manipulator 

It is assumed that each manipulator link has regular hollow circular cross-section and its stiffness matrix can be computed 

using classical expression [69]. All physical parameters that are required to compute the complete elastostatic model are given in 

Table 1. It is also assumed that all actuated joints have the same compliance coefficients that are equal to 
610 /rad mN−  . These 
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data allows us to construct a quasi-diagonal stiffness matrix 
θK  of size 48 48  that incorporates all 7 above mentioned matrices 

of size 6 6  and 6 scalar coefficients.   

Table 1 Principal parameters of the considered 6 dof manipulator 

Parameters Link #0 Link #1 Link #2 Link #3 Link #4 Link #5 Link #6 

Link length, m 0.7 0.4 1.2 0.8 0.3 0.2 0.2 

External diameter, m 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Internal diameter, m 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Material properties Young's modulus  E = 71010 N / m2,    Poisson's ratio   = 0.346 

To take into account limited precision of the measurement system, it is assumed that both and position and orientation of the 

end-effector are available for the identification, with accuracy 25 m  and 250 rad  respectively (this corresponds to a typical 

industrial laser-tracker measurement system). It is evident that here each calibration experiment requires two measurements (with 

and without external loading), which increase the measurement noise impact by the factor 2  . 

In order to identify all 258 desired parameters it is required at least 258 / 36 8=    measurement configurations, each of which

is used for six calibration experiments with different external wrenches. To simplify relevant expressions, the exciting 

forces/torques were directed along the Cartesian axes and their magnitudes were set to 1000 N  and 1000 N m , respectively. For 

this example, the measurement configurations were generated randomly and their number was increased up to 18 to ensure 

sufficient rank of the observation matrix. So, here calibration is based on 108 virtual experiments each of which provides 6 

end-effector deflections. In total, it gives 648 scalar equations that will be used for identification of the model parameters (their 

number will be gradually reduced from 258 to 27). 

5.2 Model reduction 

As was mentioned above, a complete stiffness model of the considered 6 dof manipulator contains 258 different parameters 

that describe the compliance of 6 actuated joints and 7 manipulator links. After application of M1 (physical approach, 

symmetrisation), the number of the model parameters is reduced down to 153 (that corresponds to 21 parameters for each 6 6  

stiffness matrix describing the link elasticity). At the next step, after applying of M2 (physical approach, sparcing) the number of 

parameters is reduced to 64, which corresponds to 8 parameters per a stiffness matrix of size 6 6 . Finally, using M3 

(aggregation) that integrates the joint compliance coefficients in the link stiffness matrices, the number of desired parameters 

becomes equal to 56. Hence, the physical model reduction methods M1-M3 allowed us to reduce the number of the model 

parameters by the factor 4.6. 

Table 2 Identifiable parameters of manipulator elastostatic model (“*” denotes strictly identifiable parameter, “+” corresponds 

to a semi-identifiable parameter included in the reduced model).   

11k 22k 33k 44k 55k 66k 26k 35k

Link #0 + + +  + + + * * 

Link #1 + + + + 

Link #2 + + + + 

Link #3 + + + * 

Link #4 + + + + 

Link #5 + + + * 

Link #6 + + + + 

Further, for the obtained set of the model parameters, the rank of corresponding 648 56  observation matrix was evaluated. It 

was equal to 32, which means that 24 parameters among 56 cannot be identified. The latter motivates application of the algebraic 

model reduction methods.  After application of M4 (partitioning and elimination), the current set of the model parameters was 

split into 3 principal groups, where only 4 parameters are strictly identifiable and remaining 52 are semi-identifiable (there are no 

strictly non-identifiable parameters on this stage). Using these data, the method M5 allowed us to reduce the parameters number 

down to 32. Corresponding selection process was based on giving priority to the joint compliances and diagonal elements of the 

stiffness matrices. Relevant results are presented in Table 2. 
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To reduce the measurement noise impact on the model validity, the obtained complete non-redundant model (with 32 

parameters) was further reduced. On this step, a number of relatively small model parameters were detected using method M6 

(statistical approach). For this purpose, the parameter-to-noise ratios were computed and compared with the threshold level. 

Relevant results are presented in Table 3. As follows from this table, varying the threshold level from 1 to 5, the number of the 

model parameters can be reduced down to from 27 to 25. In the following sub-section it will be shown that threshold level equal 

to 2 (corresponding to the model with 27 parameters) ensures acceptable model accuracy. Summary of the presented model 

reduction process is given in Table 4. 

Table 3 Parameter-to-noise ratios for complete non-reducible model (relatively small parameters are highlighted). 

11k 22k 33k 44k 55k 66k 26k 35k

Link #0 173 160 141  246 163 218 174 193 

Link #1 14 36 103 0.2 

Link #2 510 548 176 253 

Link #3 39 235 48 110 

Link #4 0.7 10 15 0.3 

Link #5 2.5 35 3.2 6.6 

Link #6 0.3 7.1 5.1 0.4 

Table 4 Summary of the elasto-static model reduction process for 6 dof serial manipulator 

Approach Step Model description 
Number of 

parameters 

Original model 6 joints +7 links (36 parameters per link) 258 

Physical 

M1: Symmetrisation 6 joints +7 links (21 parameters per link) 153 

M2: Sparcing 6 joints +7 links (8 parameters per link) 62 

M3: Aggregation 7 links (8 parameters per link) 56 

Algebraic 

M4a:Partitioning 

M4b:Elimination 

G1: Identifiable parameters – 4 

G2: Non-identifiable parameters - 0  

G3: Semi-identifiable parameters – 52 

52 

M5a:Splitting 

M5b:Selection 

M5c:Assigning 

Selection of 28 independent parameters 

 from 52 semi-identifiable ones  
32 

Statistical M6: Neglecting Threshold level equal to 2 27 

5.3 Comparison analysis 

To demonstrate validity of the developed technique, the obtained model has been used for the prediction of the manipulator 

compliance errors and their compensation. It is worth mentioning that for the considered experimental setup, the end-effector 

deflections due to external forces/torques are non-negligible and vary from 2 to 35 mm. For comparison purposes, the compliance 

error compensation accuracy was evaluated for two elasto-static models: (i) complete irreducible model with 32 parameters, and 

(ii) reduced model with 27 parameters that corresponds to the threshold level equal to 2. Relevant analysis was based on the 

randomly generated set of configurations, which is different from one used on the identification step.  Corresponding simulation 

results are presented in Table 5.  
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Table 5 Compliance error compensation efficiency for full and reduced set of model parameters 

Residuals 

Coordinate-based Distance-based 

max RMS max RMS 

Deflections magnitude, [mm] 33.9 9.3 34.8 16.7 

Deflections prediction 

errors, [μm] 

Complete model (32 parameters) 8.4 2.8 11.1 4.6 

Reduced model (27 parameters) 8.0 2.6 10.7 4.6 

As follows from Table 5, neglecting of small elastic parameters is reasonable here and does not influence the efficiency of the 

compliance errors compensation. Moreover, for the considered configurations, the reduced model allowed us even to improve 

slightly the positioning accuracy (by 5%).  It is clear that this result cannot be treated as a strict proof, but it was confirmed by 

numerous simulations for other configuration sets. Hence, the obtained reduced model is simple and robust with respect to the 

measurement noise while ensuring almost the same accuracy as the complete stiffness model for the manipulator compliance 

error compensation. 

6 Application example: calibration of industrial robot Kuka KR-270 

To demonstrate benefits of the developed techniques for industrial applications, this section deals with the elastostatic and 

geometric calibration of industrial robot Kuka KR-270 (Figure 5) employed in high precession machining of aircraft parts. It 

contains relevant experimental results and their comparatives analysis. 

(a) Industrial robot KUKA KR270

1q
2q

3q

4q

5q

6q

1d

2d

3d

6d

5d

4d

(b) The manipulator architecture

x

y

z

Figure 4 Industrial robot KUKA KR270 and its cinematic model. 

6.1 Elastostatic calibration 

For the considered application area, the technological process generates essential interaction between the workpiece and 

manipulator, which causes non-negligible deflections of the end-effector. To compensate related positioning errors on the control 

level (via adjusting a target trajectory [4]), an accurate but simple enough elasto-static model is required. In practice, the desired 

model is not usually provided by robot manufactures and should be obtained from dedicated experimental study. Let us apply the 

developed technique to get the desired model and to identify its parameters in real industrial environment. 

 The considered manipulator contains 7 links separated by 6 actuated joints. Taking into account that in general the elastostatic 

properties of each link are defined by 6x6 stiffness matrix, the complete but obviously redundant model contains 258 parameters. 

As a result of application model reduction techniques (M1-M5), the number of parameters to be identified has been reduced down 

to 26. More details on each step are given in Table 6. Additional restrictions here are caused by the partial-pose measurement 

technique and the gravity-based loading generating the desired deflections.  Relevant experimental setup is presented in Figure 5. 

Because of such measurement method, 10 elastostatic parameters are not identifiable from the available measurement data (Table 

7). The manipulator configurations for the elastostatic calibration were generated using the design of experiments and previously 

developed test-pose technique, which is based on the industry-oriented performance measure [57]. It should be noted that for the 

considered experimental setup and selected measurement configurations, all model parameters in complete and irreducible model 

are practically identifiable. This fact confirms the importance of the measurement configurations selection that directly affects 
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model parameters identifiably in real industrial environment. Another particularity of the industrial robot KUKA KR270 that 
should be taken into account in an accurate elasto-staic model is a gravity compensator that is attached in parallel to the second 
actuated joint. Its equivalent model was presented in  [35]. In the frame of the complete and irreducible model, the gravity 
compensator impact is taken into account by introducing a configuration dependant virtual spring in the second joint. More 
details on this approach are given  in  [35].

Leica laser 
tracker 

Loading

Dynanometer

Gravity compensator

Work-cell objects

Tools for force application and for 
mounting reflectors

P1

P3

P2

P4

Robotic manipulator Tool for force 
direction measurement

Figure 5 Experimental setup for elastostatic calibration

Table 6 Summary of the elasto-static model reduction process for industrial robot Kuka KR-270 (without gravity compensator)

Approach Step Model description Number of 
parameters

Original model 6 joints +7 links (36 parameters per link) 258

Physical

M1: Symmetrisation 6 joints +7 links (21 parameters per link) 153

M2: Sparcing 6 joints +7 links (8 parameters per link) 62

M3: Aggregation 7 links (8 parameters per link) 56

Algebraic

M4a:Partitioning
M4b:Elimination

G1: Identifiable parameters – 1
G2: Non-identifiable parameters - 10
G3: Semi-identifiable parameters – 45

46

M5a:Splitting
M5b:Selection
M5c:Assigning

Selection of 25 independent parameters
from 45 semi-identifiable ones 

26

Statistical M6: Neglecting Threshold level equal to 2 26

For the comparison purposes, calibration was performed using several elastostatic models that differ in their basic 
assumptions: (i) complete irreducible stiffness model, (ii) stiffness model with practically identifiable parameters and (iii) 
conventional model for the manipulator with rigid links and compliant actuated joints. All models have been examined with and 
without taking into account the effect of the gravity compensator. The obtained results are summarised in Table 8 showing 
capability to compensate the compliance errors using different elastostatic models. Graphical comparison of these results is given
in Figure 6. As follows from them, the lowest compliance errors can be achieved using the model R2 (obtained using the 
developed model reduction technique), which ensures the positional accuracy 0.21 mm. In contrast, the conventional elasto-static 
model with rigid links gives accuracy 3.5 times worse comparing to model R2. The histograms of the errors distribution for the 
model R2 (Figure 7) show that the non-compensated compliance errors in all directions are unbiased and almost normally 
distributed. 
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Table 7 Parameter-to-noise ratios for complete non-reducible elasto-static model for industrial robot Kuka KR-270. 

11k 22k 33k 44k 55k 66k 26k 35k

Link #0 - - 8.4  228 195 - - 10.4* 

Link #1 - - 261 239 - - 

Link #2 - 105 52.5 84.0 54.4 

Link #3 - 134 18.1 17.6 18.8 34.6 140 

Link #4 35.6 10.5 

Link #5 10.6 43.9 19.4 21.1 35.1 

Link #6 19.3 18.5 18.8 

Superscript “*” marks identifiable parameter,   Symbols “-” indicate non-identifiable parameters by 

Table 8 Efficiency of the compliance errors compensation using complete and reduced models. 

Stiffness model 
Number of 

parameters 

Compliance errors, mm 

x-direction y-direction z-direction positional 

MAX RMS MAX RMS MAX RMS MAX RMS 

Deflections magnitude without compensation 2.51 1.03 3.14 1.02 8.14 1.91 8.18 4.58 

Complete model C1 26 0.27 0.10 0.43 0.13 0.38 0.12 0.45 0.22 

Complete model C2 30 0.28 0.10 0.45 0.14 0.32 0.11 0.49 0.21 

Reduced model R1 26 0.27 0.10 0.43 0.13 0.38 0.12 0.45 0.22 

Reduced model R2 30 0.28 0.10 0.45 0.14 0.32 0.11 0.49 0.21 

Conventional model J1 5 1.42 0.43 1.73 0.41 0.66 0.23 1.78 0.75 

Conventional model J2 9 1.42 0.42 1.73 0.42 0.49 0.19 1.76 0.73 

Model C1: Complete irreducible stiffness model without gravity compensator 

Model C2: Complete irreducible stiffness model with gravity compensator 

Model R1: Stiffness model with practically identifiable parameters (i  2), without gravity compensator 

Model R2: Stiffness model with practically identifiable parameters (i  2), with gravity compensator 

Model J1: Conventional model for the manipulator with rigid links and compliant actuated joints, without gravity compensator 

Model J2: Conventional model for the manipulator with rigid links and compliant actuated joints, with gravity compensator 

Position x y z
0

0.2

0.4

0.6

0.8  Model C1

Model C2

Model R1
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RMS, mm

Figure 6 Efficiency of the compliance errors compensation using complete and reduced models 
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Figure 7 Statistical distribution of compliance errors after compensation (Model R2) 

Hence, using the developed low-order stiffness model for the compliance error compensation gives essential improvement of 

the precision for the robotic based milling.  It allowed us to compensate more than 95% of deflections caused by external loading 

and to guarantee the precision of about 0.2 mm under the loading of 2.5 kN (it is comparable with the robot repeatability of 

0.06 mm). 

6.2 Geometric calibration 

In spite that main theoretical results have been developed for elastostatic calibration, they can be also used for the geometric 

case. Let us apply them to the geometric calibration of the industrial robot KUKA KR-270 (Figure 4) considered in the previous 

sub0section. As follows from the literature [8], a complete (and irreducible) geometric model for this robot contains 30 

parameters ( 4 2 6R Pn n+ + , where 
Rn  and 

Pn  is the number of revolute and prismatic joints, respectively). Among them, 6 

parameters describe the base transformation and 6 parameters define the tool transformation. They can be excluded from this 

study since usually a dedicated techniques is applied to identify them separately. So, theoretically identifiable geometric model 

for the considered manipulator includes 18 principle parameters that are collected in a single vector  

 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5                x y x x x z x z z y z z z zp p q p q p p q p p q p     =    π (36) 

where 
jq  is the joint offset, , ,xj yj zjp p p  and , ,xj yj zj    are the relevant translational and rotational parameters, and j

indicates the joint/link number. It should be mentioned that the nominal DH parameters 
61,d d and the joint offsets 

1 6,q q 

cannot be identified separately from the base or tool transformations (they are semi-identifiable in the complete model), so they 

have been eliminated from the set of principal parameters. 

LT
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Figure 8 Experimental setup for geometric calibration 
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To get the desired measurement data, the robotic cell was equipped with a Laser tracker Leica AT-901 that provided us with 

Cartesian coordinates of three references points. The manipulator joint angles required for the identification procedure were 

obtained from the robot controler. The experimental setup for manipulator geometric calibration is presented in Figure 8.  

To reduce the influence of the non-geometric factors, the measurements were repeated three times for each configuration. As 

a result, the measurement data of each manipulator configuration contain 27 position coordinates. It is worth mentioning that the 

whole data set contains 432 coordinates { , , }xi yi zip p p . Using the obtained data, the identification procedure was applied. The 

identification results are given in Table 9. It should be stressed that some of these parameters cannot be modified in the robot 

control software. So, it is reasonable to examine the effect of reducing the number of these parameters by setting them to their 

nominal values. For this purposes, the parameter-to-noise ratios were computed (here, the estimated value of the  noise parameter 

  is about  0.1 mm.). The results show that for the parameters 
3 4 4 5 5 5, , , , ,z z z zq p q p    this indicator is extremely low, i.e.

their identification accuracy is not high enough to distinguish the identified value from zero. Therefore, it is reasonable to 

eliminate them from the model.  

Table 9 Identification results for geometric calibration for industrial robot Kuka KR-270 (full model) 

Parameter Unit     . 
Nominal 

value 

Identified 

deviation 
Confidence interval 

Parameter-to-noise 

ratio 
Subset 

1 2xp d  [mm] 350.0 -0.334 ±0.086 11.7 G1+ 

1yp [mm] 0 0.571 ±0.272 6.3 G1+ 

1x [deg] 0 0.018 ±0.005 12.0 G1+ 

2q [deg] 0 -0.008 ±0.005 5.1 G1~ 

2 3xp d  [mm] 1250.0 0.456 ±0.082 16.7 G1+ 

2x [deg] 0 0.020 ±0.014 4.3 G1~ 

2z [deg] 0 -0.021 ±0.005 13.5 G1+ 

3q [deg] 0 -0.025 ±0.019 4.0 G1~ 

3 4xp d  [mm] 1100.0 -0.229 ±0.089 7.7 G1+ 

3 5zp d  [mm] -55.0 -0.534 ±0.363 4.4 G1~ 

3z [deg] 0 -0.007 ±0.017 1.3 G1- 

4q [deg] 0 0.001 ±0.008 0.3 G1- 

4yp [mm] 0 -0.151 ±0.113 4.0 G1~ 

4zp [mm] 0 -0.027 ±0.073 1.1 G1- 

4z [deg] 0 0.026 ±0.015 5.1 G1~ 

5q [deg] 0 -0.011 ±0.027 1.3 G1- 

5zp [mm] 0 0.007 ±0.104 0.2 G1- 

5z [deg] 0 -0.010 ±0.018 1.6 G1- 

For comparison purposes, the manipulator accuracy improvement due to calibration has been studied based on the residual 

analysis before and after calibration. Here, two types of residuals have been examined, the coordinate-based and distance-based 

ones. Corresponding results are presented in Table 10, which includes the maximum and root mean square (RMS) values of the 

relevant residuals. As follows from the results, the residuals were essentially reduced after calibration both for full and reduced 

models. In particular, the maximum values have been reduced by a factor of 3.5-4.2, while the RMS values of these two criteria 

have been decreased by a factor of 4.9-5.3. Moreover, maximum errors have been slightly decreased in the reduced model 
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comparing with the full one. Hence, the obtained results confirm the reduced model suitability for the geometric errors 

compensation.  

Table 10 Manipulator accuracy improvement after geometric calibration. 

Criterion 

Residuals, [mm] 

Coordinate-based Distance-based 

max RMS max RMS 

Accuracy  

before calibration 
1.25 0.54 1.31 0.94 

Accuracy 

after calibration 

Full model 0.32 0.10 0.37 0.18 

Reduced model A* 0.30 0.11 0.36 0.19 

Reduced model B** 0.32 0.10 0.37 0.18 

Improvement 

factor 

Full model 4.0 5.3 3.5 5.2 

Reduced model A* 4.2 4.9 3.6 4.9 

Reduced model B** 4.0 5.3 3.5 5.2 

* Parameers have been identified using full model (18 parameter, condition number equal 60.6)

** Parameers have been identified using reduced model (12 parameters, condition number equal 29.7) 
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Figure 9 Empirical elimination of small parameters and its impact on the identification results. 

In order to verify the reduced model validity from another point of view, the impact of a single parameter elimination (for the 

whole set) has been evaluated. Relevant results are presented in Figure 9, which contains a table showing how much 

parameter-to-noise ratio changes if i-th parameter is eliminated from the model. The i-th line of the table corresponds to the 

reduced model that does not include the i-th parameter only. The remaining elements of the line show the sensitivity of rest of the 

parameters to this elimination. The sensitivity is normalized with respect to parameter deviations ( i ) that make them equivalent 

to the change of the parameter-to-noise ratio 
i .  In fact, if the off-diagonal values are less than 3, the deviations in corresponding

parameters will be inside of the confidence interval with the probability 99.8%. On the right-hand side of the table, the condition 

numbers of the corresponding (reduced) observation matrices are provided. It should be noted that the condition number of the 

original observation matrix is equal to 60.7. The presented results show that whatever parameter is eliminated, the identified 

values of the remaining parameters are almost the same. That means that the reduced model is practically acceptable for the 

calibration. 
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Table 11 Identification results for geometric calibration for industrial robot Kuka KR-270 (reduced model) 

Parameter Unit. 

Identified deviation 
Potential loss of 

accuracy, [mm] 
Confidence interval 

Parameter-to-noise ratio 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

1xp [mm] -0.334 -0.321 0.013 ±0.083 11.7 11.6 

1yp [mm] 0.571 0.526 0.045 ±0.150 6.3 10.5 

1x [deg] 0.018 0.017 0.010 ±0.003 12.0 15.0 

2q [deg] -0.008 -0.008 0.022 ±0.004 5.1 6.1 

2xp [mm] 0.456 0.448 0.008 ±0.080 16.7 16.7 

2x [deg] 0.020 0.021 0.025 ±0.008 4.3 8.3 

2z [deg] -0.021 -0.021 0.024 ±0.004 13.5 15.7 

3q [deg] -0.025 -0.035 0.203 ±0.009 4.0 11.2 

3xp [mm] -0.229 -0.234 0.005 ±0.084 7.7 8.2 

3zp [mm] -0.534 -0.764 0.230 ±0.167 4.4 13.8 

4yp [mm] -0.151 -0.201 0.050 ±0.070 4.0 8.6 

4z [deg] 0.026 0.028 0.005 ±0.013 5.1 6.2 

Hence, for the considered problem, it is prudent to use the reduced geometric model that does not include the following 

parameters: 
3 4 4 5 5 5, , , , ,z z z zq p q p   . The validity of the reduced model for the compensation has been confirmed by the 

residual analysis. As follows from Table 10, the residuals do not change significantly because of the parameters elimination. 

Besides, the elimination leads to the improvement of the observation matrix condition number (it has been reduced from 60.6 to 

29.7). Corresponding identification results as well as potential lose of the robot positioning accuracy caused by the model 

reduction are summarized in Table 11. In spite of the fact that for some parameters (such as 
3 3, zq p ) potential loss of the 

accuracy is more than 0.2 mm. So, the reduced model insures almost the same compensation capacity as the complete one (see 

Table 10).  Therefore, the experimental study presented in this Section, which illustrates the application of developed theoretical 

results, confirms benefits of the developed approach.  

7 Conclusions 

The paper deals with the problem of the manipulator stiffness modeling, which is extremely important for the robotic-based 

machining of contemporary aeronautic materials where high position accuracy is required while performing prescribed 

manufacturing task. The main attention is paid to the elastostatic parameters identification and model reduction, where the notion 

of practical identifiability is introduced that relies on the essential differences in the model parameter magnitudes and the 

measurement noise impact.  

In contrast to previous works, the manipulator stiffness properties are described by the sophisticated model, which takes into 

account the flexibilities of all mechanical elements such as links, actuated joints, mechanical transmissions, etc. In the frame of 

this model, the virtual joint method (VJM) is used, which operates with 6×6 stiffness matrices for each compliant link and scalar 

coefficients for the joints/transmissions. This yields extremely high number of the model elastostatic parameters to be identified, 

that for a conventional 6 d.o.f. manipulator reaches 258. Even by eliminating dependent ones does not allow us to reduce this 

number substantially; for a typical manipulator the stiffness model includes 153 independent parameters that, theoretically, may 

be identified. However, the parameter magnitudes differ significantly (~1000 times), so straightforward application of 

conventional identification technique does not give reliable results (for some parameters the estimation errors are greater than 

100%  that also may violate fundamental physical properties of the stiffness matrices, such as positive-definiteness and 

symmetry). On the other hand, some of the desired parameters are so small that their influence on the manipulator accuracy is 

negligible. This leads the problem of further reduction of the stiffness model that aims at eliminating some small parameters. To 

distinguish these small parameters from essential ones, the notion of practical identifiability was introduced. 
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To solve the problem, physical, algebraical and statistical model reduction methods were developed. They take into account 

mathematical relations between the elements of the compliance matrices and parameter magnitude with respect to the 

measurement noise impact. In spite of the fact that main theoretical results have been developed for elastostatic calibration, they 

can be also efficiently applied for geometric case. The advantages of the developed approach are illustrated by two application 

examples that deal with elastostatic and geometric calibration of industrial robot used in aerospace industry in real industrial 

environment. In future, the problem of the complete model reconstruction from the obtained set of practically identifiable 

parameters will be in the focus of our attention. 
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