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dustrial robots and focuses on reduction of the mea-surement noise impact by means of proper selection 

experiments. Particular attention is paid to the enhancement of measurement and optimization tech-
tification. The developed method implements a complete and irreducible geometric model for serial 

t sources of errors (link lengths, joint offsets, etc). In contrast to other works, a new industry-oriented 

l measurement configuration selection that improves the existing techniques via using the direct 

aimed at finding the ca-libration configurations that ensure the best robot positioning accuracy after 

study of heavy industrial robot KUKA KR-270 illustrates the benefits of the devel-oped pose strategy 

ovement.
1. Introduction

In robotic literature, the problem of geometric calibration is
already well studied and has been in the focus of the research
community for many years [1–8]. As reported by a number of
authors, the manipulator geometric errors are responsible for
about 90% of the total positioning error [9]. Besides of the errors in
link lengths and joint offsets, the end-effector positioning errors
can be also caused by the non-perfect assembling of different links
and arise in shifting and/or rotation of the frames associated with
different elements, which are normally assumed to be matched
and aligned [10]. It is clear that the geometric errors do not vary
with the manipulator configuration, while their influence on the
positioning accuracy depends on the latter. At present, there exist
various calibration techniques that are able to calibrate the ma-
nipulator geometric model using different modeling, measure-
ment and identification methods [11–16]. The identified errors can
be efficiently compensated either by adjusting the controller input
(the target point) or by direct modification of the model para-
meters used in the robot controller.

The classical calibration procedure usually includes four steps:
antes, 4 rue Alfred-Kastler,
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modeling, measurement, identification and implementation. The
Modeling step focuses on the development of proper geometric
model of robotic manipulator. In the pioneer works [14], re-
searches have used the classical DH convention for robot calibra-
tion. However, this model turned out to be discontinuous in some
cases and may lead to unacceptable identification results [17]. So,
several alternative approaches have been proposed to overcome
these difficulties by means of introducing extra parameters [18,19].
Since the inclusion of additional parameters causes redundancy,
these methods raise the problem of parameter non-identifiability,
which leads to the necessity of investigating the model com-
pleteness, irreducibility and continuity. For example, in [20], the
authors proposed a complete and parametrically continuous (CPC)
model and further its modified version (MCPC) for robot calibra-
tion. Besides, there have been also proposed some analytical/nu-
merical techniques for elimination of the non-identifiable para-
meters. For example, in [18], the authors used QR decomposition
of the identification Jacobian for model reduction and in [21], the
authors used straightforward evaluation of the Jacobian matrix
rank.

The Measurement step involves data collecting of robot link and
end-effector position/orientation. Generally, six parameters are
required to specify the manipulator end-effector location (three
translations and three rotations) [12,22], but sometimes the end-
effector position is measured only [23]. Various calibration
methods based on different measurement techniques were



proposed, they are usually categorized as closed-loop and open-
loop ones. The closed-loop calibration uses physical constraints on
the manipulator end-link (point, line or plane constraints, for in-
stance). It is claimed to be autonomous and does not require any
external device [13,21,24]. However in this case, the manipulators
must have some redundancy to perform self-motion, and the robot
configuration should be carefully selected to satisfy particular
constraints. Therefore, the open-loop methods have found wide
applications; they are based on the full or partial pose measure-
ments of the end-effector location using external devices. In
practice, the partial pose information is often used and provides
from one to five dimensional measurements [11,25,26] instead of
the full pose information (6-dimensional location). In general, the
lower dimensional measurement is more attractive due to sim-
plicity of calibration experiment setup. For this so-called partial
pose measurement technique, various external devices can be ap-
plied, such as laser tracking system [23], the ball-bar system [27]
and wire potentiometer [22], etc.

The identification step in robot calibration can be treated as the
best fitting of the experimental data (given input variables and
measured output variables) by corresponding models. This pro-
blem has been addressed by a number of researchers who have
used various modeling methods and identification algorithms,
such as linear least square technique, Levenberg–Marquardt al-
gorithm, Kalman filtering technique and maximum likelihood es-
timator etc. [16,28]. Among them, the least square technique is the
most often applied one, which aims at minimizing the sum of
squared residuals [29]. An important problem here is non-homo-
geneity of the residual errors (distances and angles, for instance).
To solve this problem, usually a straightforward solution is ap-
plied: assigning weights or normalization, but this weight as-
signing procedure is very non-formal and not rigorous (while
being essential for the final results). To solve the corresponding
optimization problem, there exist various numerical algorithms
such as gradient search [27,30], heuristic search and the others
[31]. However, these numerical techniques are often difficult to
apply due to large number of parameters to be tuned, that often
lead to low convergence. Nevertheless, for the case of geometric
calibration, the errors in the parameters are relatively small, so the
linearization technique can be successfully applied. In this case,
Table 1
Summary of related works for geometric calibration

Application (Manipulator) Number of model
parameters

Number of measurement
configurations

6-dof parallel robot [25] 35 80(1)

Stewart platform [36] 42 15(1)

PUMA 560 [23] 27 25(1)

PUMA 560 [27] 36 800(1)

PUMA 560 [22] 24 48(1)

PUMA 560 [13] 23 100(3)

Schilling Titan II [37] 42 800(2)

Stäubli TX90 [15] 23 100(2)

SCARA robot [38] 30 10(4)

Gough platform [39] 42 18(5)

Selection of measurement configurations:
1 Random configurations.
2 Well distributed configurations.
3 Noise amplification index.
4 Minimum condition number.
5 Several observability indices.

Measurement technique:

a Open-loop measurement.
b Closed-loop measurement.
c Simulation.
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the solution of a linear least square problem can be found
straightforwardly (i.e., via the pseudo-inverse of Moore–Penrose)
[32,33]. It should be mentioned that in some particular cases, for
instance, when the geometric errors are relatively large, the so-
lution can only be found iteratively [15].

The most essential works on the above mentioned calibration
methods in robotics literature are summarized in Table 1. Among
these publications, limited number of works directly addresses the
problem of parameter identification accuracy and reduction of the
impact of measurement errors. Although the calibration accuracy
may be improved by straightforwardly increasing the number of
experiments [27], the measurement configurations may also affect
the robot calibration [34]. It has been shown that the latter may
significantly improve the identification accuracy [35]. Intuitively,
using diverse manipulator configurations for different experi-
ments seems perfectly corresponds to the basic idea of the clas-
sical experiment design theory, which intends to spread the
measurements as much distinct as possible [15]. However, the
classical results are mostly obtained for very specific models (such
as the linear regression) and cannot be applied directly due to
non-linearity of the relevant expressions of robot geometric
model.

At present, there are few works where the problem of optimal
pose selection for robot calibration has been discussed [39,40]. In
these works, in order to compare the plans of experiments, several
quantitative performance measures have been proposed and used
as the objectives of the optimization problem associated with the
optimal sets of measurement poses. In defining the objectives, the
authors in [35,40–42] proposed some observability indices, which
are based on the singular values of the identification Jacobian
(condition number, for instance). These indices have been ex-
amined and compared in [38,39,43,44], where the authors paid
more attention to developing efficient numerical algorithms, such
as genetic algorithm, Tabu search, DETMAX and also hybrid
methods in order to obtain the optimal measurement configura-
tions. However, these approaches deal with rather abstract notions
that are not directly related to the robot accuracy and may lead to
some unexpected results, for example, when the condition num-
ber is good, but the parameter estimation errors are rather high.
Besides, it usually requires very intensive and time consuming
Measurement device Identification algorithm Achieved accuracy,
[mm]

Two inclinometers(a) Levenberg–Marquardt
method

0.40

Single theodolite(a) Non-linear LS 0.50
Laser tracking system(a) — 0.10
Ball-bar system(a) Gradient search method 0.08
Wire potentiometer(a) Non-linear LS 0.50
–(b) Non-linear LS 0.25
–(b) Linear LS 5.70
Touching probe(b) Weighted pseudo inverse 0.22
–(b) Genetic algorithm 3.60
Vision system(c) Heuristic search 1.30



computations caused by a poor convergence and high dimension
of the search space (number of calibration experiments multiplied
by the manipulator joint number). Therefore, for the industrial
applications, existing approaches should be essentially revised.

The primary goal of this work is to achieve the desired robot
positioning accuracy using minimum number of experiments.
Here it is proposed to introduce an additional step to the classical
calibration procedure, the design of experiments, which is per-
formed before measurements and is aimed at obtaining the set of
measurements poses that ensures good calibration results (robot
accuracy after error compensation). It allows us to improve the
efficiency of error compensation and to estimate the robot accu-
racy, which is important for industrial applications.

To address the above mentioned problems, the remainder of
the paper is organized as follows. Section 2 presents the problem
of geometric calibration in general. Section 3 describes a suitable
manipulator geometric model for calibration purposes (complete,
irreducible model). Section 4 contains one of the main contribu-
tions: an enhanced partial pose measurement method. Section 5
describes a dedicated identification algorithm for manipulator
geometric parameters. Section 6 proposes a new approach for
optimal measurement pose selection and evaluates the calibration
efficiency improvement. Section 7 presents the experimental re-
sults obtained for the geometric calibration of a KUKA KR-270
robot. Finally, Section 8 summarizes the main results and con-
tributions of this paper.
Fig. 1. Enhanced robot ca
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2. Problem of geometric calibration

In robotics, calibration is a process that allows us to estimate
the manipulator geometric parameters, which are employed in
robot controller. In practice, the nominal values of these para-
meters are different from the real ones, so they should be identi-
fied for each particular manipulator using data from calibration
experiments. As it was mentioned before, the conventional cali-
bration procedure includes four sequential steps. In the scope of
this paper, an additional step is introduced that deals with the
design of calibration experiments, in order to improve the cali-
bration accuracy. A relevant enhanced robot calibration procedure
is presented in Fig. 1. The particularities of each step of this pro-
cedure are described below.

Step 1: This step deals with manipulator modeling and is aimed
at developing a geometric model that is suitable for calibration
(complete and irreducible), i.e. which is good enough from phy-
sical point of view and does not create any numerical problems
during identification. This model should allow us to compute the
end-effector location for any given values of the actuated joint
coordinates q (provided that the manipulator parameters π are
known). However, for calibration purposes, it is usually required a
linearized version of this model allowing to evaluate the influence
of the small variations of q and π. So let us assume that the ma-
nipulator links are rigid and corresponding geometric model can
be written as the vector function gt (q, )π= , where t (p, )Tφ= defines
the manipulator end-effector location (position and orientation),
vector q contains all actuated joint coordinates, and vector

0π π π= + Δ collects all geometric parameters and their
libration procedure.



deviations. Under this assumption, the actual location of the ma-
nipulator end-effector, which incorporates the geometric errors is
expressed as gt (q, )0π π= + Δ . In practice, the geometric errors πΔ
are usually relatively small, therefore the following linerized
model can be used

t t J (1)0 π= + Δπ

where gt (q, )0 0π= is the end-effector location computed using
the nominal geometric parameters, Jπis the identification Jacobian
matrix, which can be computed using the derivative g (q, )/0π π∂ ∂ .
More details concerning the computation of identification Jacobian
can be found in [45].

Step 2: This is an additional step (design of experiments) that is
introduced here in the calibration procedure. It is aimed at
choosing optimal measurement configurations for calibration ex-
periments. It should rely on an appropriate performance measure,
which takes into account the particularities of the technological
process (robotic-based machining, for instance). It should be also
able to obtain solution within the work-cell constraints, and to
adjust the number of experiments with respect to the measure-
ment system precision. In practice, the influence of the geometric
errors on the end-effector position varies from one configuration
to another and essentially differs throughout the workspace. So,
the desired accuracy is usually required to be achieved for rather
limited workspace area (for example, where the workpieces are
located in the robotic cell). For this reason, in this paper, it is
proposed to limit the benchmark manipulator configurations by a
single one (the machining configuration, for instance), which will
be further referred to as the manipulator test-pose. To develop a
new approach of calibration experiments design that utilizes the
above proposed ideas, let us introduce several basic definitions:

Definition 1. The plan of experiments is a set of manipulator
configurations i m{q , 1, }i = that are used for the measurements of
the end-effector positions i m j n{p , 1, , 1, }i

j = = and for further
identification of the desired parameters π.

Definition 2. The manipulator test-pose is a particular robot con-
figuration q0 (that is usually specified in relevant technological
process), for which it is required to achieve the best compensation
of the end-effector positioning errors.

Definition 3. The quality of the plan of experiments is defined by
the efficiency of manipulator positioning error compensation at
the test-pose, which is the root-mean-square distance 0ρ between
the desired manipulator end-effector position and the position
obtained after error compensation.

Step 3: This step (measurements) deals with carrying out cali-
bration experiments using the obtained configurations. Depending
Fig. 2. Measurement tool with several reference points.

4

on the measurement methods (measurement tools and devices,
reference point locations, see Fig. 2, where a typical manipulator
mounting flange is shown), it may provide different experimental
data (the end-effector position/location, etc.). For the conventional
full-pose measurement technique that is frequently used in robot
calibration, the corresponding optimization problem allowing us
to compute the desired parameters is expressed as

t J min
(2)i

m

i i
1

2∑ π‖Δ − Δ ‖ →π
π= Δ

However, the residual components of this system of identifi-
cation equations are non-homogeneous (millimeters and radians,
for instance). In some cases, these components are normalized
before computing the squared sum, but it is a non-trivial step that
affects the identification accuracy. To overcome this difficulty, it is
proposed to enhance the partial pose measurement method that
uses directly and only the positioning coordinates, but for several
reference points for each manipulator configuration. More details
of this method and its advantages will be presented in Section 4.

Step 4: This step deals with the identification and is aimed at
estimating the geometric parameters by using the corresponding
model and proper identification algorithm. Usually, the identifi-
cation algorithms are based on the minimization of the least-
square objectives that are derived assuming that the measurement
tool has a single reference point (see Eq.(2)), while the proposed
measurement technique operates with several of them. For this
reason, it is required to revise the existing identification techni-
ques, taking into account both modification of the objective
function and increasing of the number of parameters (since each
reference point introduces additional parameters).

In addition, this step includes the evaluation of the parameter
identification accuracy. In practice, different sources of error may
affect the identification precision. They include the measurement
errors of the external device providing the end-effector position
coordinates (laser tracker in our case), the errors in the actuator
encoders (internal measurement devices) giving the manipulator
joint coordinates that depend on encoder resolution, etc. Besides,
the assumption concerning the manipulator model (the link ri-
gidity, for instance) may also affect the identification accuracy. It is
clear that, all these sources of error can be hardly taken into ac-
count in calibration. For this reason, only the most significant of
the above mentioned sources of error should be considered in the
accuracy analysis. As follows from our experience, the inaccuracy
of external measurement system has the most significant impact
on the robot positioning accuracy, comparing to other sources of
error that can be assumed negligible in the frame of geometric
calibration.

Step 5: At the last step (implementation), the geometric errors
are compensated by modification of the geometric parameter va-
lues embedded in the robot controller. In the case when some
errors cannot be entered in the controller directly, an off-line error
compensation technique is required. This technique should com-
pensate the manipulator errors via modification of the target
trajectory that becomes slightly different from the desired one
[46].

It is clear that the proposed scheme of robot calibration pro-
cedure allows us to improve the calibration accuracy for given
number of experiments (or to minimize the number of experi-
ments for given accuracy). The steps 1, 4 and 5 in the calibration
procedure have been already well studied [9,47], while the steps
2 and 3 still require some revision in terms of the applicability to
particular manufacturing process where the robot is used. Hence,
the goal of this work is the enhancement of calibration technique
for manipulator geometric parameters using enhanced partial
pose measurement and design of experiments. Particular



problems that should be considered are the following:
(1)
 Development of an industry-oriented performance measure
which has clear physical meaning that is related to the robot
accuracy after geometric error compensation.
(2)
 Enhancement of partial pose measurement method that al-
lows us to avoid the problem of non-homogeneity in the
identification equations.
(3)
 Experimental validation of the developed approach for geo-
metric calibration of an industrial KUKA KR-270 robot.
These problems will be considered in more details in the fol-
lowing sections.
3. Manipulator geometric modeling

To be suitable for robot calibration, the manipulator geometric
model must satisfy certain requirements. In particular, it should be
complete, i.e. is able to describe all possible errors in link/joint
geometry, but not redundant (i.e. does not contain parameters that
influence the end-effector position/orientation in the same way
for any manipulator configuration). In previous works [48] [49], it
was shown that the conventional D-H model may produce pro-
blems for parameter identification because its incompleteness. To
avoid this difficulty, some modifications have been proposed that
however introduce some redundancy, which may cause non-
identifiability of certain parameters. This redundancy can be
eliminated by applying either numerical or analytical techniques
[20,21,50] that allow us to obtain an appropriate model, which is
usually referred to as “complete, irreducible and continuous” one.
Let us apply one of these techniques [51] to generate the desired
model for heavy industrial manipulator KUKA KR-270 that will be
used in experimental study.

In the frame of the above defined notations and assuming that
the manipulator links are rigid enough and the non-geometric
factors are negligible in this level of calibration, the general ex-
pression of the geometric model for a n-dof serial manipulator can
be described as a sequence of homogeneous transformations

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

q

q

T(q) T ( ) T ( , ) T ( ) ...

T ( , ) T ( ) T ( ) (3)

base b q Link L

n qn Link Ln tool t

Joint 1 1 1

Joint

π π

π π

= ⋅ π ⋅ ⋅

⋅ π ⋅ ⋅

where T with different indices denote the relevant transformation
matrices of size 4 4× , q is the vector of the actuated joint co-
ordinates, while the vectors bπ , tπ , Ljπ and the scalars qjπ are the
manipulator geometric parameters corresponding to the base,
tool, links and joints, respectively. In the literature, there are a
Fig. 3. The industrial serial robot KUKA KR-270 and its geometric parameters
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number of techniques that allows us to obtain the manipulator
model of such type, which is definitely complete but includes re-
dundant parameters to be eliminated (methods of Hayati, Whit-
ney–Losinski, etc.). In this work, we will use the model generation
technique that is based on dedicated analytical elimination rules
and includes the following steps:

Step 1. Construction of the complete and reducible model in
the form of homogeneous matrices product.
�

. (a
The base transformation ⎡⎣ ⎤⎦T T T T R R Rbase x y z x y z b
=

�
 The joint and link transformations T Tj Link jJoint, ,⋅
(1) For revolute joint qT T R ( , ) [T T R R ]j Link j e j j qj u v u v LjJoint, , ,⋅ = π ⋅
(2) For prismatic joint qT T T ( , ) [R R ]j Link j e j j qj u v LjJoint, , ,⋅ = π ⋅
) Ind
where e jis the joint axis, u j and v j are the axes orthogonal to e j.
�
 The tool transformation ⎡⎣ ⎤⎦T T T T R R Rtool x y z x y z t
=

Step 2. Elimination of non-identifiable and semi-identifiable
parameters in accordance with specific rules for different nature
and structure of consecutive joints.
�
 For the case of consecutive revolute joint qR ( , )e j j qj, π
(1) if e ej j 1⊥ − , eliminate the term Ru L, j 1− or Rv L, j 1− that corres-

ponds to Re j, ;
(2) if e ej j 1∥ − , eliminate the term Tu L, j k− or Tv L, j k− that defines the

translation orthogonal to the joint axes, for which k is
minimum (k 1≥ ).
�
 For the case of consecutive prismatic joint qT ( , )e j j qj, π
(1) if e ej j 1⊥ − , eliminate the term Tu L, j 1− or Tu L, j 1− that corres-

ponds to Te j, ;
(2) if e ej j 1∥ − , eliminate the term Tu L, j k− or Tv L, j k− that defines the

translation in the direction of axis e j, for which k is mini-
mum (k 1≥ ).
Let us apply the above presented technique to the industrial
robot KUKA KR-270 (See Fig. 3), which is used in experimental
validations of this paper. For this manipulator that includes six
revolute joints, the complete (but redundant) model contains 42
parameters and can be presented as
ustrial robot KUKA KR270 and (b) the manipulator architecture.



⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

q q

q q

q q q q

q q

q q

T T T T R R R R ( ) T T R R

R ( ) [T T R R ]

R ( ) [T T R R ] R ( )

T T R R R ( ) [T T R R ]

R ( ) T T R R T T T R R R
(4)

x y z x y z b z x y x y L

y x z x z L

y x z x z L x

y z y z L y x z x z L

x y z y z L x y z x y z t

1 1

2 2

3 3 4 4

5 5

6 6

1

2

3

4
5

6

= ⋅ + Δ ⋅

⋅ + Δ ⋅ ⋅

⋅ + Δ ⋅ ⋅ + Δ

⋅ ⋅ + Δ ⋅

⋅ + Δ ⋅ ⋅

It should be mentioned that the nominal values of some
parameters can be found in the manufacturer datasheets, but the
remaining ones are assumed to be equal to zero. Applying the
elimination rules for the case of consecutive revolute joints, the
parameters { }R , T , R , R , T , Ry L z L x L y L x L x L, , , , , ,1 2 3 4 5 5 are sequentially
eliminated from the redundant model (4). Here, it is worth making
the following remarks:

Remark 1. In the redundant model (4), it has been already taken
into account that the nominal geometric parameter d1 (shift of the
robot base along z-axis) cannot be identified separately from the
base transformation.

Remark 2. For the first and the last joints, which are connected to
the robot base and tool respectively, the offsets q1Δ and q6Δ are
treated as semi-identifiable parameters. So, they are eliminated
from the manipulator geometric model and are incorporated in
the base and tool parameters. However, the actuated joint vari-
ables q1 and q6 must retain in the model.

Remark 3. The geometric parameters of the last link
{ }T , T , R , Ry z y z L6

cannot be identified separately from the tool
transformation. So, it is reasonable to include these parameters in
the tool transformation.

Remark 4. In the case when only position measurements are
available, the tool orientations are not known. So, the parameters
of the rotational transformations { }R , R , Rx y z t

corresponding to the
tool are treated as non-identifiable.

Remark 5. Six parameters describing the base transformation
{ }T , T , T , R , R , Rx y z x y z b

and three parameters { }T , T , Tx y z t
that define

tool transformation can be treated as known (there are dedicated
techniques to identify them separately).

This finally allows us to obtain the complete and irreducible
geometric model for the considered manipulator that includes 18
principle parameters to be identified.1

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

q

q q q q

q q q q q

T R ( ) T T R

R ( ) [T R R ] R ( ) [T T R ]

R ( ) T T R R ( ) [T R ] R ( )
(5)

robot z x y x L

y x x z L y x z z L

x y z z L y z z L x

1

2 2 3 3

4 4 5 5 6

1

2 3

4
5

= ⋅

⋅ + Δ ⋅ ⋅ + Δ ⋅

⋅ + Δ ⋅ ⋅ + Δ ⋅ ⋅

This model will be further used for geometric calibration of the
industrial robot KUKA KR-270 and for the optimal selection of the
measurement poses. Let us collect these parameters in the fol-
lowing vector

{
}

p p q p q p p q p p

q p (6)

x y x x x z x z z y z z

z z

1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

5 5 5

φ φ φ φ φ

φ

π = Δ Δ Δ

Δ

1 It should be stressed that 6 parameters related to the base transformation
and 6 parameters describing the tool transformation are not included in this ex-
pression (see Remarks 1 and 5), so it is in good agreement with common expres-
sion of Zhuang [52] that for robot with 6 rotational joints yields 30 independent
parameters.
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where qjΔ is the joint offset, p p p, ,xj yj zj and , ,xj yj zjφ φ φ are the
relevant translational and rotational parameters, and j indicates
the joint/link number. For these parameters, the corresponding
nominal values are

{ }d d d d0 0 0 0 0 0 0 0 0 0 0 0 0 0 (7)0 2 3 4 5π =

where the geometric meaning of d d, ... ,2 5 is illustrated in Fig. 3. In
the following sections, this model will be used for computing the
end-effector location of the KUKA KR-270 robot required for some
numerical routines employed in parameter identification algorithms.
4. Enhanced partial pose measurement method

In industrial applications, it is often used the partial pose
measurement method that requires obtaining the end-effector
position coordinates only (without orientation). On the other
hand, this simplification does not allow the user to identify certain
manipulator parameters that can be estimated via the end-effector
orientation. For this reason, this section presents an intermediate
technique, where the orientation is not computed directly but is
incorporated in the identification equations via the Cartesian co-
ordinates of several reference points.

For the conventional full pose measurement technique, the de-
sired parameters are identified from the full-scale linearized geo-
metric model (1), which can be rewritten as

i mt J , 1, 2, ... (8)i i πΔ = Δ =π

where p p pt ( , , , , , )i xi yi zi xi yi zi
Tφ φ φΔ = Δ Δ Δ Δ Δ Δ is the pose devia-

tion caused by small variation in the model parameters πΔ . It is
clear that the corresponding system of linear equations can be
solved with respect to πΔ if the number of experiments m is suf-
ficiently high and the manipulator configurations i m{q , 1, }i = are
different to ensure non-singularity of relevant observation matrix
used in the identification procedure. For this technique, each
configuration qi produces six scalar equations to be used for the
identification. Corresponding optimization problem (2) whose
solution leads to the desired parameters πΔ is often solved with-
out paying attention to the non-homogeneity of the residual
components. In some cases, the weighted least-square technique
is used to resolve this problem, but the weighting coefficients are
usually defined intuitively, which may affect essentially the
identification accuracy.

The main difficulty of this conventional technique (full-pose) is
that the orientation components ( . . )xi yi zi

Tφ φ φ cannot be mea-
sured directly. So, these angles are computed using excessive
number of measurements for the same configuration qi, which

produce Cartesian coordinates p p p j n n{( , , ) 1, ; 3}xi
j

yi
j

zi
j T | = ≥ for

several reference points of the measurement tool attached to the
manipulator mounting flange (Fig. 2). Hence, instead of using mn3
scalar equations, that can be theoretically obtained from the
measurement data, this conventional approach uses only m6 scalar
equations for the identification. This may obviously lead to some
loss of the parameter estimation accuracy.

To overcome this difficulty, the proposed technique is based on
reformulation of the optimization problem (2) using only the data
directly available from the measurement system, i.e. the Cartesian
coordinates of all reference points pi

j (see Fig. 2). This idea allows
us to obtain homogeneous identification equations where each
residual has the same unit (mm, for instance), and the optimiza-
tion problem is rewritten as follows

p J min
(9)i

m

j

n

i
j

i
j p

1 1

( ) 2∑ ∑ π‖Δ − Δ ‖ →π π= = Δ



Fig. 4. Difference between conventional full-pose approach and enhanced partial pose approache.
Here, the matrix J i
j p( )
π with the superscripts “ p( )” denotes the

position rows of the corresponding identification Jacobian J i
j
π , the

index “i” defines the manipulator configuration number, and the
index “ j” denotes the reference point number. An obvious ad-
vantage of this formulation is its simplicity and clarity of the re-
sidual vector norm definition (conventional Euclidian norm can be
applied here reasonably, the normalization is not required). So, the
problem of the weighting coefficient selection does not exist in
this case. In fact, under the assumption that measurement errors
are modeled as a set of independent and identically distributed (i.i.
d.) random values (similar for all directions x, y, z and for all
measurement configurations), the optimal linear estimator should
operate with equal weights for all equations. Besides, the most
important issue is related to the potential benefits in the identi-
fication accuracy, since the total number of scalar equations in-
corporated in the least-square objective increases from m6 to mn3 .

To compare the efficiency of the presented approach with the
conventional one, a simulation study has been carried out, which
dealt with geometric calibration of a 3-link spatial manipulator
(Fig. 4). Detail description of this example can be found in [53],
where it has been proved that the enhanced technique based on
partial pose information ensures essential improvement of para-
meter identification accuracy. Using these identified geometric
parameters, it is possible to evaluate the manipulator end-effector
positioning accuracy throughout the workspace. Corresponding
results are shown in Fig. 4, in which the achieved robot accuracy
Fig. 5. Improvement of manipulator positioning accuracy after calibration due to the
technique.
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has been compared for two techniques. As follows from this figure,
using the proposed approach, the maximum positioning error has
not even reached the minimum one by using conventional tech-
nique. Moreover, the minimum positioning error has been reduced
by a factor of 4. Fig. 5

Therefore, the partial pose technique is rather promising and
will be further used for calibration experiments in this work. In
contrast to the conventional methods, this technique allows us to
avoid the problem of non-homogeneity of the relevant optimiza-
tion objective and does not require any normalization (which
arises in the case when full pose residuals are used).
5. Identification of manipulator geometric parameters

5.1. Identification algorithm for the enhanced partial pose method

Let us assume that the measurement tool has n reference
points (n 3≥ ) that are used to estimate relevant vectors of the
Cartesian coordinates p p pp ( , , )i

j
xi
j

yi
j

zi
j T= for m manipulator con-

figurations qi. In this notation, the subscript “i” and subscript “ j”
denote the experiment number and reference point number re-
spectively. Correspondingly, the manipulator geometric model (3)
can be rewritten as

i m j nT T T (q , ) T ; 1, , 1, (10)i
j

base robot i tool
jπ= · · = =
enhanced partial pose technique: (a) Conventional technique and (b) proposed



where the vectors pi
j are incorporated in the fourth column of the

homogenous transformation matrix Ti
j, the matrix Tbase defines the

robot base location, the matrices j nT , 1,tool
j = describe the loca-

tions of the reference points that are observed by the measure-
ment system (see Fig. 2). Here, the matrix function T ( q , )robot i π
describes the manipulator geometry and depends on the current
values of the actuated coordinates qi and the parameters π to be
estimated. Taking into account that any homogeneous transforma-
tion matrix Ta

b can be split into the rotational Ra
b and translational

pa
b components and presented as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥0

T R p

1
,

(11)
a
b a

b
a
b

=

the vector of the reference point positions j np , 1,i
j = (that are

measured in the calibration experiments) can be expressed in the
following form

i m j n

p p R p (q , ) R R (q , ) p ;

1, , 1, . (12)

i
j

base base robot i base robot i tool
jπ π= + ⋅ + ⋅ ⋅

= =

This allows us to obtain mn3 scalar equations for the calibration
purposes, where n 3≥ and m is high enough to ensure identifia-
bility of the desired parameters.

Applying the least-square method, the corresponding optimi-
zation problem can be presented as

p p R p (q , ) R R (q , ) p

min
(13)

i

m

j

n

i
j

base base robot i base robot i tool
j

1 1

2

{p ,R ,p , }base base tool
j

∑ ∑ π π‖ − − ⋅ − ⋅ ⋅ ‖

→
π

= =

where the vectors/matrices pbase , Rbase, { }j np , 1,tool
j = and π are

treated as unknowns.
The main difficulty with this optimization problem is that some

of the unknowns are included in the objective function in highly
non-linear way. So, to solve this problem, numerical optimization
technique is required. However in practice, the deviations in the
model parameters are relatively small, which allows us to linearize
the manipulator geometric model (12). This leads to a linear least-
square problem, whose solution can be obtained straightforwardly
with the matrix pseudo-inverse. However, to simplify computa-
tions, here it is proposed to apply the linearization technique se-
quentially and separately with respect to two different subsets of
the model parameters (corresponding to the base/tool transfor-
mations and the manipulator geometry). Consequently, the iden-
tification procedure is split into two steps. In the frame of this
approach, the first step deals with the estimation of pbase , Rbase,

ptool
j , which are related to the base and tool transformations (as-

suming that the manipulator parameters are known). The second
step focuses on the estimation of π under the assumption that the
base and tool components have been already identified. In order to
ensure that the desired identification accuracy can be achieved,
these two steps are repeated iteratively.

Step 1. For the first step, taking into account that the errors in
the base orientation are relatively small, the matrix Rbase is pre-
sented in the following form

R [ ] I (14)base baseφ= ~ +

where I is a 3 3× identity matrix, vector baseφ includes the devia-
tions in the base orientation angles, and the operator “[ ]~ ” trans-
forms the vector ( , , )x y z

Tφ φ φφ = into the skew symmetric matrix
as
8

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

[ ]

0

0

0 (15)

z y

z x

y x

φ φ

φ φ

φ φ

φ~ =

−

−

−

This leads to the following simplified expression of Eq. (12)

p p p p [ ] R u (16)i
j

base robot
i

robot
i

base robot
i

tool
jφ= + − ⋅ ~ + ⋅

that can also be rewritten in a matrix form as

⎡
⎣⎢ ⎡⎣ ⎤⎦

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

p p I p R

p

u (17)
i
j

robot
i

robot
i T

robot
i

base

base

tool
j

φ= + ~

and

u R p (18)tool
j

base tool
j=

Here the vectors pbase, baseφ and j nu , 1,tool
j = are treated as

unknowns.
Applying to the linear system (17) the linear least-square

technique, the desired vectors defining the base and tool trans-
formation parameters can be expressed as follows

⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p ; ; u ; ... u A A A p

(19)
base base tool tool

n

i

m

i
j

i
j

i

m

i
j

i
1

1

1

1

T T∑ ∑ Δφ =
=

−

=

where

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

0 0

0 0

0 0

A

I p R ...

I p R ...
... ... ... ... ... ...

I p ... R (20)

i
j

robot
i T

robot
i

robot
i T

robot
i

robot
i T

robot
i

=

~

~

~

and the residuals are integrated in a single vector
p ( p , ... , p )i i i

n T1Δ = Δ Δ . Finally, the variables defining the location of
the reference points are computed using Eq. (18) as
p R utool

j
base
T

tool
j= · . This allows us to find the homogeneous transfor-

mation matrices Tbase and Ttool
j that are contained in Eq. (10).

Step 2. On this step, the manipulator geometric parameters π
are estimated. For this purpose, the principal system (10) is line-
arized and rewritten in the form

p J (21)i
j

i
j p( ) πΔ = ·Δπ

where p p pi
j

i
j

robot
iΔ = − is the residual vector corresponding to the

j th− reference point for the i th− manipulator configuration, πΔ is
the vector of geometric errors, the matrix J i

j
π is the identification

Jacobian computed for the configuration qi with respect to the
reference point j. Applying to this system the least-square tech-
nique, the desired vectors of geometric errors πΔ can be obtained
as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J J J p

(22)i

m

j

n

i
j p T

i
j p

i

m

j

n

i
j p T

i
j

1 1

( ) ( )

1

1 1

( )∑ ∑ ∑ ∑πΔ = Δπ π π
= =

−

= =

It should be noted that, to achieve the desired accuracy for the
original non-linear problem (13), the steps 1 and 2 should be re-
peated iteratively.

Another particularity may arise here is related to the property
of measurement noise. In the above expressions, it was explicitly
assumed that the measurement errors are similar for all directions.
However, for some measurement systems, the errors in the long-
itudinal and transversal directions may essentially differ. In this
case, the Eqs. (19) and (22) should be slightly modified by



including weighting coefficients

⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

p ; ; u ; ... u

A W A A W p
(23)

base base tool tool
n

i

m

i
j

i
j

i
j

i

m

i
j

i
j

i

1

1

2
1

1

2T T∑ ∑

φ

= Δ
=

−

=

and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J W J J W p

(24)i

m

j

n

i
j p T

i
j

i
j p

i

m

j

n

i
j p T

i
j

i
j

1 1

( ) 2 ( )

1

1 1

( ) 2∑ ∑ ∑ ∑πΔ = Δπ π π
= =

−

= =

where the weighting coefficients matrix Wi
j is computed using a

technique proposed in our previous work [54].
Hence, the above presented identification algorithm is able to

provide the estimation of the manipulator geometric parameters
as well as the matrices of the base and tool transformations.
However, the obtained identification results usually include some
dispersion due to measurement errors. So, in order to achieve
desired identification accuracy, the influence of these errors
should be evaluated and reduced as much as possible, which will
be in the focus of the following subsection.

5.2. Influence of the measurement errors on the identification
accuracy

Under the assumption that measurement noise has the most
significant impact on the robot positioning accuracy and the other
sources of error are negligible, the basic equation of calibra-
tion (21) should integrate the measurement errors and is ex-
pressed as

i m j np J ; 1, , 1, (25)i
j

i
j p

i
j( ) π εΔ = ·Δ + = =π

where the vectors ( , , )i
j

xi
j

yi
j

zi
j Tε ε εε = denote the additive random

errors, which are usually assumed to be unbiased and i.i.d. with
the standard deviation σ . Then, using Eq. (22), the estimates of the
desired parameters can be presented as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J J J

(26)i

m

j

n

i
j p T

i
j p

i

m

j

n

i
j p T

i
j

1 1

( ) ( )

1

1 1

( )∑ ∑ ∑ ∑π̂ π εΔ = Δ +
= =

π π

−

= =
π

where the second term describes the stochastic component. As
follows from this expression, the considered identification algo-
rithm provides the unbiased estimate of the desired parameters,
i.e., E ( )π̂ πΔ = Δ where, E ( )⋅ denotes the mathematical expectation
of the random value. Taking into account the statistical properties
of the measurement errors (which are assumed to be similar for all
reference points, all manipulator configurations and all directions,
in accordance with expression ( )E Ii i

T 2σε ε = ), the desired covar-
iance matrix of πΔ , which defines the identification accuracy, can
be computed as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟cov( ) J J

(27)i

m

j

n

i
j p T

i
j p2

1 1

( ) ( )

1

∑ ∑σπ̂Δ =
= =

π π

−

Hence, the impact of the measurement errors on the identified
values of the geometric parameters is defined by the matrix sum

J Ji
m

j
n

i
j p T

i
j p

1 1
( ) ( )∑ ∑= = π π that in literature is also called the information

matrix. It is clear that to achieve the best accuracy, the elements of
covariance matrix (27) should be as small as possible. This re-
quirement can be satisfied by proper selection of the experiment
input data (i.e., the measurement configurations i m{q , 1, }i = ) as
well as by increasing the number of experiments m. Since in-
creasing of the measurements is rather time consuming, it is
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reasonable to investigate the first approach that deals with opti-
mization of the measurement configurations for limited number of
experiments.

In more general case when the measurement errors differ from
direction to direction, the expectation ( )E i i

Tε ε can be expressed as

( )( )E diag i k, , , if (28)i
j

k
jT

xi
j

yi
j

zi
j2 2 2σ σ σε ε = =

(see our previous study on this issue presented in [54]). So, the
covariance matrix defining the calibration accuracy can be re-
written in the following form

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟cov( ) J W J

(29)i

m

j

n

i
j p T

i
j

i
j p2

1 1

( ) 2 ( )

1

∑ ∑σπ̂Δ =
= =

π π

−

where the weighting coefficient matrix Wi
j can be computed as in

Eq. (24). It is clear that here the optimization of measurement
configurations is also promising. However, in practice for the
design of calibration experiments, the measurement errors are
assumed to follow the i.i.d assumption.

In the literature, the problem of optimal pose selection for ca-
libration experiments have been studied in a number of works
[36,39–44], where several scalar criteria were proposed to defined
this type of optimality in formal way. The main drawback of these
approaches is that the relevant optimization objectives are not
directly related to the manipulator positioning accuracy and its
targeted industrial application (they usually focus on the para-
meter identification accuracy). Hence, in order to achieve si-
multaneously high accuracy both for the manipulator parameters
and for the end-effector position (or to find reasonable trade-off),
it is required to revise the existing techniques and to define a
proper objective for measurement pose selection, taking into ac-
count the specificities of the application area studied in this work.
This issue is in the focus of the next section.
6. Optimal selection of measurement configurations

This section proposes a new approach for calibration experi-
ments design that has two distinct features: (i) optimization based
on a new industrial-oriented performance measure that evaluates
the manipulator positioning accuracy after calibration; (ii) utili-
zation of experimental data obtained by means of the enhanced
partial pose measurement method.

6.1. Test-pose based approach for calibration experiments design

In robot calibration, the desired manipulator parameters are
estimated using experimental data corrupted by the measurement
noise. For this reason, the parameters estimates are not equal to
the true values, they vary from one set of experiments to another
and can be treated as random ones. As follows from previous
section, relevant identification algorithms provide unbiased esti-
mates (i.e. their expectation is equal to the true values) but their
dispersion essentially depends on the set of measurement con-
figurations that provides the experimental data for the identifi-
cation. Hence, it is reasonable to select the measurement config-
urations in the best way, in order to ensure the lowest impact of
the measurement errors on the parameter estimates. In the lit-
erature, this problem is known as the “calibration experiments
design”. However, existing approaches focus on the accuracy of the
parameter estimation (defined by the relevant covariance ma-
trix (27)), while the considered industrial application motivates us
to focus on the manipulator positioning accuracy after calibration.

In more details, the notion of manipulator positioning accuracy
after calibration is illustrated in Fig. 6. It is assumed here that the



Fig. 6. Dispersion of the manipulator positioning errors after calibration and per-
formance measure for selection of measurement configurations (for given single
target point).
desired end-effector position is pd, but without calibration, the
end-effector is located at the point gp (q , )0 0 π= , which can be
computed using the nominal geometric model. Here, the joint
coordinate vector q0 is obtained from equation gp (q , )d 0 0π= via
the inverse kinematics. Using calibration, for each set of experi-
mental data, it is possible to find the parameter estimates kπ̂ that
allow us to compensate partially the positioning errors by com-
puting another joint coordinate vector qk from the equation

gp (q , )d k kπ̂= and to relocate the end-effector at the point
gp (q , )k k π= , which is closer to the desired position pd. Evaluating

the distribution of Cartersian coordinates of points pk, it should be
mentioned that those points are concentrated around the desired
position pd in such way that:

E (p ) p (30)k d=

So, the target position can be treated as the center. To evaluate
their dispersion with respect to the desired position, relevant
distances dist(p , p )k k dρ = can be used. This leads to the following
statistical performance measure

( )E (p p ) (p p ) (31)k d
T

k d0ρ = − −

which is the root-mean-square distance between the target posi-
tion and the end-effector position after calibration. This indicator
is used below to describe the geometric errors compensation ef-
ficiency. It is clear that the performance measure 0ρ is directly
related to the manipulator accuracy in an engineering viewpoint.

It is clear that the positioning error scattering and relevant
performance measure 0ρ highly depend on the target point posi-
tion and varies throughout the workspace. In the frame of this
work, it is assumed that the manipulator accuracy can be eval-
uated for so-called test-pose that is specified in the relevant
technological process. This idea allows us to use the above men-
tioned performance measure 0ρ as an objective in the calibration
experiments design.

Using the adopted notations and assuming that the manip-
ulator geometric model is linearized, the distance kρ can be com-

puted as the Euclidean norm of the vector p Jk
p

k0
( )δ δπ= π , where the

subscript’‘0’ in the identification Jacobian J p
0

( )
π is related to the test

pose q0 and k kπ π̂ πδ = − is the difference between the estimated
and true values of the robot geometric parameters respectively.
Further, taking into account expression (26) and the assumptions
concerning the measurement errors that are treated as unbiased
and i.i.d. random variables, it can be easily proved that the ex-
pectation E ( p ) 0kδ = . Therefore, the points pk that the end-effector
attains after compensation are located around the desired position
10
pd, as shown in Fig. 6.
The dispersion of these points can be evaluated by the variance

( )E p pk
T

kδ δ which in accordance with the above definition is equal
to the square of the performance measure 0ρ . This yields the fol-
lowing expression

( )E J J (32)
T p T p

0
2

0
( )

0
( )ρ δ δπ π= π π

which can be rewritten using the identity equation
p p trace( p p )T Tδ δ δ δ≡ as

( )Etrace J ( )J (33)
p T p T

0
2

0
( )

0
( )ρ δ δπ π= π π

Further, by applying Eq. (27) and considering that the term
E ( )Tδ δπ π is the covariance matrix of the geometrical error esti-
mates, i.e., E ( ) cov( )Tδ δπ π π̂= , the desired expression can be pre-
sented in the final form as

⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟trace J J J J

(34)

p

i

m

j

n

i
j p T

i
j p p T

0
2 2

0
( )

1 1

( ) ( )

1

0
( )∑ ∑ρ σ= ⋅ π π

= =
π π

−

As follows from this expression, 0
2ρ can be treated as the

weighted trace of the covariance matrix cov( )π̂ , where the weighting
coefficients are computed using the test-pose joint coordinates q0.
Hence, the proposed performance measure has obvious advantage
compared to the existing ones [40], which operate with “pure”
trace of this matrix and involve straightforward summing of its
diagonal elements (which may be of different units). Based on this
performance measure, the calibration experiments design can be
reduced to the following optimization problem

⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟trace J J J J min

(35)

p

i

m

j

n

i
j p T

i
j p p T

0
( )

1 1

( ) ( )

1

0
( )

{q ...q }i m
∑ ∑ →π π
= =

π π

−

whose solution gives a set of the desired measurement config-
urations {q , .. . , q }m1 .

Hence, in the frame of the proposed approach, the calibration
quality (evaluated via the error compensation accuracy 0ρ ) is

completely defined by the set of Jacobian matrices { }J , ... , Jp
m
p

1
( ) ( )
π π

that depend on the manipulator configurations {q , .. . , q }m1 , while

the Jacobian matrix J p
0

( )
π corresponding the test-pose q0 defines the

weighting coefficients. It is worth mentioning that test-pose based
approach can be also extended for calibration of the manipulator
elasto-static parameters (see [55], for more details). The ad-
vantages of the proposed approach will be illustrated in the fol-
lowing subsections.

6.2. Comparison analysis of the proposed and conventional
approaches

Let us illustrate the advantages of the test-pose based approach
by an example of the geometrical calibration of a two-link planar
manipulator. It is assumed that the nominal link lengths l l{ , }1 2

differ from the real ones, and these deviations l l{ , }1 2Δ Δ should be
identified by means of calibration. In this case, the manipulator
end-effector position can be expressed as

p l l q l l q q

p l l q l l q q

( )cos ( )cos( )

( )sin ( )sin( ) (36)

x

y

1 1 1 2 2 1 2

1 1 1 2 2 1 2

= + Δ + + Δ +

= + Δ + + Δ +

where px and py define the end-effector position, q q,1 2 are the joint
coordinates that define the manipulator configuration. It can be
proved that in this case the parameter covariance matrix does not
depend on the angles q i1 and is expressed as



Table 2
Accuracy comparison of the proposed and conventional approaches

Test-pose (q20), [deg.] 0 30 60 90 120 150 180

/ c0
2 2ρ ρ 0.5 0.75 0.83 1 0.83 0.75 0.5

Accuracy improvement (%) 41 15 10 0 10 15 41
⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥( )m q

m q

q m

cov( )
cos

cos

cos
(37)

i
m

i

i

m

i

i

m

i

2

2
1 2

2
1

2

1
2

∑

∑

σπΔ =
− ∑

−

−=

=

=

where the vector l l( , )1 2πΔ = Δ Δ denotes the parameters devia-
tions to be identified, m is the number of experiments and σ is the
standard deviation. of the measurement noise.

For comparison purposes, the plans of experiments were ob-
tained using three different strategies:
(1)
 the measurement configurations were generated randomly;

(2)
 the measurement configurations were obtained using the

conventional approach based on D-optimality principle;

(3)
 the measurement configurations were obtained using the

proposed test-pose based approach (see Section 6.1).
For the first approach (i), the measurement configurations were
found in a trivial way, using a uniform random number generator
scaled within the joint limits. For the conventional approach
(ii), where the D-optimality principle was used (that has been
proved to be efficient in many applications), the performance
measure is equal of the covariance matrix determinant (37), which
yields

( )m q
det(cov( ))

cos (38)i
m

i

2

2
1 2

2

σπΔ =
− ∑ =

As follows from this expression, this criterion requires mini-
mization of the term q( cos )i

m
i1 2

2∑ = . So, the determinant mini-

mum value is equal to m/2 2σ and it is reached when

q i mcos 0, 1, ... ,
(39)i

m

i
1

2∑ = =
=

It should be mentioned that this optimality condition also sa-
tisfies the A- and G-optimality principles. More details concerning
the calibration experiment planning using the above conditions
can be found in [56].

For the proposed approach (iii), it is assumed that the calibra-
tion quality is evaluated in the predefined manipulator test con-
figuration q q( , )10 20 . In this case, the performance measure 0

2ρ (34)
can be computed as

( )
m q q

m q
2

cos cos

cos (40)

i
m

i

i
m

i

0
2 2 20 1 2

2
1 2

2
ρ σ= ⋅

− ∑

− ∑
=

=

As follows from relevant analysis, the minimum value of 0
2ρ is

equal to

m

q

q

cos

1 sin (41)
0 min
2

2 2
20

20

ρ σ= ⋅
−

and it is achieved when the measurement configurations satisfy
the equation

q m
q

q
cos

1 sin

cos (42)i

m

i
1

2
20

20
∑ = ⋅

−

=

which essentially differ from (39). It should be mentioned that
general solution of Eq. (42) for m configurations can be replaced by
the decomposition of the whole configuration set by the subsets of
2 and 3 configurations (while providing the same identification
accuracy). This essentially reduces computational complexity and
allows user to reduce number of different measurement config-
urations without loss of accuracy.
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Using the above presented expressions for the robot accuracy
after calibration, the proposed and conventional approaches can
be compared analytically and numerically. In particular, for the test
pose q( , )20⁎ , the conventional approach (ii) ensures the position-

ing accuracy after compensation m2 /c
2 2ρ σ= , while for the pro-

posed approach (iii), similar performance measure is equal to
m q q/ cos /(1 sin )0 min

2 2 2
20 20ρ σ= ⋅ − . Corresponding values are

compared in Table 2, which proves that using the proposed ap-
proach for the calibration experiment design allows us to improve
the positioning accuracy up to 41%.

To illustrate advantages of the proposed approach, Fig. 7 pre-
sents simulation results for manipulator positioning errors after
compensation corresponding to three different sets of measure-
ment configurations employed in calibration. It is also assumed
that the manipulator parameters are l l1 m, 0.8 m1 2= = ; the
number of measurement configurations m 2= ; the test config-
uration is defined by the vector q ( 45 , 20 )0 = − ∘ ∘ , and the s.t.d. of
the measurement errors is 1 mmσ = . For comparison purposes,
the following plans of experiments (measurement configurations)
have been considered:
(1)
 Random plan: q (0 , 10 )1 = −∘ ∘ and q (0 , 10 )2 = ∘ ∘ , which has
been generated randomly;
(2)
 Conventional plan: q (0 , 90 )1 = −∘ ∘ and q (0 , 90 )2 = ∘ ∘ , which
satisfies D-optimality principle [34];
(3)
 Proposed plan: q (0 , 46 )1 = −∘ ∘ and q (0 , 46 )2 = ∘ ∘ , which sa-
tisfies the test-pose based approach.
To obtained reliable statistics, the calibration experiments have
been repeated 100 times. Corresponding results presented in Fig. 7
show that the proposed approach allows us to increase accuracy of
the end-effector position on average by 18% comparing to the
D-optimal plan and by 48% comparing to the randomly generated
plan.

Hence, this simple example confirms that the proposed per-
formance measure is attractive for practicing engineers and allows
us to avoid the multi-objective optimization problem that arises
while minimizing all elements of the covariance matrix (27) si-
multaneously. In addition, using this approach, it is possible to find
a balance between the accuracy of different geometrical para-
meters whose influence on the final robot accuracy is unequal.
Another example confirming this conclusion is presented in our
previous work [57].

It is worth mentioning that the proposed approach allows es-
sential improvement of the calibration efficiency and to achieve
the best manipulator positioning accuracy for the user-defined test
configurations related to the manufacturing task (in contrast to the
conventional approaches that are targeted at the best parameter
identification accuracy). However, for typical industrial robots
whose model includes very high number of parameters, relevant
optimization becomes extremely time consuming. For this reason,
the next subsection focuses on simplification of numerical rou-
tines employed in the selection of optimal measurement
configurations.



Fig. 7. Dispersion of manipulator positioning errors after calibration for different plans of experiments: (a) Random plan, (b) conventional plan and (c) proposed plan.
6.3. Simplification of the optimal pose selection procedure

It is clear that analytical solutions of relevant optimization
problems (35) can hardly be obtained (for example, when the
number of parameters to be identified is very high, the analytical
computations of the matrix inversion in these expressions are
hardly possible). So, applying a numerical optimization technique
is the only reasonable way, but the convergence rate, the total
computational time and ability to attain the global minimum be-
come key issues. For this reason, several conventional optimiza-
tion techniques were examined. In order to improve their effi-
ciency, two techniques that are adapted to the test-pose based
approach have been proposed: (i) application of parallel and hy-
brid computations; (ii) generation of quasi-optimal solutions using
lower-dimensional calibration plans.

In order to obtain the global optimum for the considered pro-
blem, it is required numerous repetitions of the optimization with
different starting points. As follows from our experiences, even
using thousands of them may be not enough for finding the global
optimum but the required computational time could overcome
hundreds of hours. So, it is reasonable to apply parallel computing
technique to speed up the design process and to take advantage of
multi-core architecture in modern computers. Relevant computa-
tions in this work were carried out on a workstation with 12 cores,
which allowed us to decrease the computational time by the factor
of 10–12. However, it is not enough yet to solve the problem of real
industrial size, where several dozen of parameters should be
identified. To overcome this difficulty, it has been proposed a hy-
brid approach that combines advantages of the genetic algorithm
and the gradient search. The idea behind this technique is to
modify the starting point selection strategy for the gradient search
in order to improve the algorithm efficiency. To ensure better
convergence to the global minimum, it has been proposed to use
the best half of final solutions obtained from GA as the starting
points for gradient search. This hybrid approach has been proved
to be quite efficient in terms of computational time (improved by a
factor of 5, in addition to parallel computing) and allows us to
avoid convergence to the local minima.

On the other hand, as follows from our experiences, the di-
versity of the measurement poses does not contribute significantly
to the accuracy improvement if m (the total number of measure-
ments) is high enough. This allows us to propose an alternative
technique, which uses the same measurement configurations sev-
eral times (allowing to simplify and speed up the measurements).
This approach can be also referred to as the “reduction of problem
dimension”.

To explain the proposed approach in more details, let us as-
sume that the problem of the optimal pose selection has been
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solved for m different configurations and the obtained calibration
plan ensures the positioning accuracy m

0ρ . Using these notations,
let us evaluate the calibration accuracy for two alternative stra-
tegies that employ total number of experiments k m× :

Strategy #1 (conventional): the measurement configurations
are found from the full-scale optimization of size k m× .

Strategy #2 (proposed): the measurement configurations are
obtained by simple repetition of the configurations got from the
low-dimensional optimization problem of size m (i.e. at each
configuration, the measurements are repeated k times).

It is clear that the calibration accuracy km
0ρ for the strategy #1 is

better than the accuracy corresponding to the strategy #2 that can
be expressed as k/m

0ρ . However, as follows from our study, this
difference is quite small if the total number of measurements is
high enough, while the number of different configurations m is
larger than 3. This allows us to essentially reduce the size of the
optimization problem employed in the optimal selection of mea-
surement poses without significant impact on the positioning
accuracy.

To demonstrate the validity of the proposed approach, a
benchmark example that deals with geometric calibration of a
6-dof manipulator has been solved using strategies #1 and #2,
assuming that the total number of measurements is equal to 12
(i.e. using different factorizations such as 12 1× , 6 2× , 4 3× ,
3 4× ). Relevant results are presented in Table 3, where the first
four lines give the accuracy 0ρ and the last line shows corre-
sponding computational time. It is noteworthy that the factoriza-
tion 12 1× , where all measurement poses are different, is only 6%
better comparing to the factorization 3 4× where measurements
are repeated 4 times in 3 different configurations. At the same
time, the factorizations 6 2× and 4 3× give almost the same re-
sults as the factorization 12 1× . On the other hand, the compu-
tational time of the optimal pose generation for m 3= is much
lower than for m 12= . Hence, as follows from these results, re-
peating experiments with optimal plans obtained for the lower
number of configurations provides almost the same performance
as “full-dimensional” optimal plan. Obviously, this reduction of the
measurement pose number is very attractive from an engineering
viewpoint. This technique will be used in the application example
presented in the following section.
7. Experimental results: geometric calibration of KUKA KR-270

To confirm the applicability of the proposed calibration tech-
niques and demonstrate their benefits from engineering point of
view, this section presents the experimental procedure, the iden-
tification results as well as the accuracy analysis for geometric



Table 3
Comparison of the optimal and quasi-optimal solutions for measurement config-

urations in calibration experiments, evaluated via 0
minρ , [mm] (case of a 6-dof

manipulator, repetitions of measurements k times for m different configurations)

Total number of
measurements

Number of different configurations

m 3= m 4= m 6= m 12=

km 3= 0.0637
(3 1)×

km 4= 0.0521
(4 1)×

km 6= 0.0450
(3 2)×

0.0426
(6 1)×

km 12= 0.0319
(3 4)×

0.0301
(4 3)×

0.0301
(6 2)×

0.0301
(12 1)×

Computational time 38 min 45 min 56 min 1.6 h
calibration of the industrial KUKA KR-270 robot.
7.1. Experimental environment and measurement setup

The manufacturing cell where the examined robot has been
installed is presented in Fig. 8. The work-cell includes a 6-dof in-
dustrial KUKA KR-270 robot with six revolute joints, a machining
table, a vertical frame for mounting the pieces. It should be noted
that for geometric calibration, the above mentioned equipment
(that can be also treated as the obstacles) cause some limits for
placement of the external measurement device. Taking into ac-
count particularities of the technological process considered in
this work, the manipulator test-pose (configurationq0) has been
defined in the location where the best robot positioning accuracy
should be achieved: q (76.7 , 56.9 , 89.3 , 45.1 , 76 , 57.2 )0 = ° − ° ° ° ° ° . It
is worth mentioning that similar configuration has been used in
previous works [58,59] to evaluate the quality of the robot-based
machining.

To identify the desired geometric parameters, the manu-
facturing cell is equipped with some additional measuring devices
that provide us with Cartesian coordinates of the references points
for each manipulator configuration. Besides, the manipulator joint
angles required for the identification procedure are obtained from
the robot control system. So, entire experimental setup includes
the following units:
�
 6-dof KUKA KR-270 robotic manipulator whose geometric
parameters should be identified (repeatability of this robot is
Fig. 8. The experimental work-cell environment: (a) general vie
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60 mm [60], details concerning its kinematics are presented in
Section 3);
�
 Robot control system KR-C2, which is used for changing the
manipulator configurations and measuring the corresponding
joint angles with a precision equal to 70.0001°;
�
 Special measurement tool with three reference points located
on the circle of radius 104 mm, this tool is attached to the
manipulator mounting flange;
�
 Laser tracker Leica AT-901 that is used to measure the Cartesian
coordinates of the reference point with a precision of 10 mm
[61];
�
 Laser tracker reflector that is sequentially attached to the re-
ference points (with precision about 1 mm), it allows the mea-
surement device to estimate the distances and compute the
required Cartesian coordinates;

The experimental setup for manipulator geometric calibration
is shown in Fig. 9. It is worth mentioning that the calibration ex-
periments are carried out in a limited area (smaller than the robot
entire workspace) caused by the work-cell size limitation and
some obstacles. For this reason, some of the manipulator config-
urations cannot be reached during the experiments (As a con-
sequence, they are not included in the optimal plan).

7.2. Optimal measurement pose selection

While selecting the minimum number of measurement con-
figurations, it is necessary to keep in mind that each manipulator
pose produces 6 independent equations only that are used for
identification. On the other hand, the set of geometric parameters
to be identified includes 33 unknowns:
(1)
 18 principal parameters of the KUKA KR-270 robot;

(2)
 6 parameters describing the laser tracker location with respect

to the robot base frame (both position and orientation);

(3)
 9 parameters describing locations of the end-effector reference

points with respect to the manipulator mounting flange (po-
sitions only for three points).
Therefore, at least six different measurement configurations are
required to ensure non-singularity of the identification Jacobian
and ability to estimate the desired values. For this reason, relevant
optimization problem aiming at determining optimal measure-
ment poses has been solved for the configuration number m 6= .

To take into account the manipulator joint limits and the work-
cell constraints, the optimization problem for measurement
w; (b) typical machining configuration (test-pose).



Fig. 9. Experimental setup for manipulator geometric calibration.

Table 4
The joint limits of robot KUKA KR-270

q1 q2 q3 q4 q5 q6

qmin, [deg.] �180 �145 �110 �180 �125 �180

qmax , [deg.] 180 0 155 180 125 180

Table 5
The work-cell space boundaries with respect to the robot base frame

px py pz

pmin, [mm] �1400 �3000 300

pmax , [mm] 1800 2200 3500

Table 6
Comparison of calibration plans with different diversity of measurement
configurations.

Calibration plans Robot accuracy 0ρ ,

[mm]

Computational time

(i) {Sol. #1×3} 7.85 56 min
{Sol. #2×3} 7.84 56 min
{Sol. #3×3} 7.83 56 min

(ii) {Sol. #1×2, Sol. #2} 7.84 1.9 h
{Sol. #1×2, Sol. #3} 7.84 1.9 h
{Sol. #1, Sol. #2×2} 7.83 1.9 h
{Sol. #2×2, Sol. #3} 7.83 1.9 h
{Sol. #1, Sol. #3×2} 7.83 1.9 h
{Sol. #2, Sol. #3×2} 7.83 1.9 h

(iii) {Sol. #1, Sol. #2, Sol. #3} 7.83 2.8 h
Random configurations (for
comparison)

17.33 �0.05 s

Table 7
Identification results for manipulator tool transformations

Reference point #1 (P1) Reference point #2 (P2) Reference point #3 (P3)

Value, [mm] CI Value, [mm] CI Value,
[mm]

CI

px 277.23 70.05 276.49 70.05 278.44 70.05

py �46.53 70.04 �48.25 70.04 103.73 70.05

pz �93.87 70.04 94.05 70.05 �2.17 70.05
configurations selection (see Eq.(35)) should be solved subject to
q q qi

min max≤ ≤ and gp (q ) pi
min max≤ ≤ . In particular, { }iq 1, 6i =

denote the measurement configurations, the function g (q )i de-
scribes the manipulator geometric model and returns the end-
effector position coordinates of the current configuration. These
constraints take into account the manipulator joint limits
[q , q ]min max and the work-cell boundaries [p , p ]min max , whose va-
lues are given in Table 4 and 0, respectively. Table 5

This optimization problem has been solved using the MATLAB
software with the built-in optimization functions “ga” and
“fmincon”, which are required for the proposed hybrid approach
that employs the genetic algorithm and the gradient search. Cor-
responding solution minimizes the objective function 0ρ (the
14



Table 8
Identification results for manipulator geometric parameters

Parameter Unit Value Confidence interval

Estimated using covar-
iance matrix

Estimated using Gibbs
sampling

p dx1 2≡ Δ [mm] �0.353 70.086 70.102

py1 [mm] 0.426 70.272 70.421

x1φ [deg.] 0.015 70.005 70.005

q2Δ [deg.] �0.007 70.005 70.004

p dx2 3≡ Δ [mm] 0.458 70.082 70.060

x2φ [deg.] 0.022 70.014 70.022

z2φ [deg.] �0.023 70.005 70.005

q3Δ [deg.] �0.023 70.019 70.013

p dx3 4≡ Δ [mm] �0.214 70.089 70.093

p dz3 5≡ Δ [mm] �0.508 70.363 70.259

z3φ [deg.] �0.011 70.017 70.022

q4Δ [deg.] 0.001 70.008 70.009

py4 [mm] �0.167 70.113 70.044

pz4 [mm] �0.018 70.073 70.044

z4φ [deg.] 0.025 70.015 70.010

q5Δ [deg.] �0.011 70.027 70.009

pz5 [mm] 0.016 70.104 70.041

z5φ [deg.] �0.008 70.018 70.007

Table 9
Evaluation of the manipulator accuracy improvement based on residual analysis

Criterion Before
calibration

After
calibration

Improvement
factor

Coordinate-based
residuals, [mm]

max 1.25 0.32 4.0
RMS 0.54 0.10 5.3

Distance-based re-
siduals, [mm]

max 1.31 0.39 3.5
RMS 0.94 0.17 5.5
proposed performance measure), which describes the manipulator
positioning accuracy after calibration. The measurement noise
parameter σ has been taken from the technical specification of the
laser tracker and is equal to 10 mm. It should be mentioned that, in
order to reduce the computational efforts and, to pay more atten-
tion to the parameters that can be tuned in the robot controller,
only nine the most essential geometric parameters were considered
while computing the Jacobian matrices J p

0
( )
π and J i

p( )
π . They include the

link lengths d d{ , ... , }2 5 whose nominal values are known and the
joint offsets q q{ , ... , }1 5Δ Δ that are nominally equal to zero.

In order to find a solution as close as possible to the global
minimum, the optimization problem has been solved several times
with different starting points. Nevertheless, three different
Fig. 10. Histograms of residual distribution along X-, Y-, and Z-directions afte
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solutions have been obtained that ensure almost the same value of
the considered performance measure 0ρ ( 13.6≈ mm). Corresponding
solutions (measurement configurations) are presented in [45]. For
comparison purposes, these solutions have been evaluated both
separately and in different combinations, assuming that the
measurements are performed 18 times in the following way: (i)
repeating three times the measurements in configurations from a
single set; (ii) using twice configurations from one set and only
once from the second set; (iii) using all configurations from three
sets simultaneously (but only once). Corresponding values of 0ρ
are presented in Table 6. As follows from this table, the diversity of
manipulator configurations has almost negligible contribution to
the improvement of robot accuracy (it is about 7.85 mm, the dif-
ference is less than 0.2%). This confirms the results from Subsec-
tion 6.3, which claims that using simple repetition of the optimal
plan with lower number of measurement configurations essen-
tially reduces the experimental complexity while the same cali-
bration accuracy can be achieved.

7.3. Identification of geometric parameters

The obtained measurement configurations have been used for
the calibration experiments for KUKA KR-270 industrial robot. It is
worth mentioning that each manipulator configuration provides
27 values of the position coordinates. These coordinates have been
obtained using two different locations of the laser tracker (see more
details in [45]). However, at certain configurations, some of the
reference points were not visible for both laser tracker locations.
This problem can be solved by increasing the number of laser
tracker locations, but in practice such solution is limited by the
experimental time as well as the work-cell constraints. On the
other hand, since the calibration experiment employs two laser
tracker placements, 6 additional parameters describing the second
laser tracker location should be also identified. In total, the system
of identification equations contains 432 expressions that can be
used to identify the whole set of 39 geometric parameters. To
achieve the highest identification accuracy, here it is proposed to
use all measurements corresponding to 18 manipulator config-
urations simultaneously for calibration of the geometric
parameters.

Using the obtained measurement data, the two-step identifi-
cation procedure has been applied (see Section 5). On the first
step, the base and tool transformations have been computed,
corresponding results are presented in Table 7. On the second step,
these transformations have been used for the identification of the
manipulator geometric parameters, which are presented in Ta-
ble 8. It should be mentioned that in order to increase the iden-
tification accuracy, this two-step procedure has been repeated
iteratively (280 iterations, computing time was less than two
r geometric calibration: (a) X-direction, (b) Y-direction and Z-direction.



Fig. 11. Residual distribution after geometric calibration for different measurement configurations.
minutes). As follows from the results, the desired geometric
parameters have been identified with high accuracy, which has
been evaluated using two different techniques (based on the sta-
tistical properties extracted from the covariance matrix and using
the Gibbs sampling).

The results presented in Table 8 include 18 parameters, some of
which cannot be modified in the robot control software. So, it is
useful to examine the effect of reducing the number of these
parameters by setting them to their nominal values. Relevant
analysis shows that the manipulator end-effector positioning error
impact because of such a simplification essentially differs from one
parameter to another, and they can be split into the following
groups:
�
 Parameters p p p p p p q q{ , , , , , , , , , , }x y x x z y z z z1 1 2 3 3 4 2 3 2 3 4φ φ φΔ Δ ,
whose neglecting leads to the loss of accuracy from 0.10 mm to
1.03 mm;
�
 Parameters p p q{ , , , , , }z z x x z4 5 5 1 2 5φ φ φΔ , whose neglecting leads
to the loss of accuracy from 0.02 mm to 0.09 mm;
�
 Parameter q4Δ , whose neglecting leads to the loss of accuracy
is about 4 mm.

Comparing to the machining accuracy required for the con-
sidered milling process (0.05–0.25 mm), the above listed posi-
tioning error impacts are not negligible for the most of the geo-
metric parameters. So, their deviations should be compensated
either in the geometric model embedded in the robot controller or
at the step of generation of the machining trajectory.

For comparison purposes, the manipulator accuracy improve-
ment due to calibration has been studied based on the residual
analysis before and after calibration (computed using the nominal
and identified values of geometric parameters respectively). Here,
two types of residuals have been examined, the coordinate-based
and distance-based ones. Corresponding results are presented in
Table 9, which includes the maximum and root mean square
(RMS) values of the relevant residuals. As follows from the results,
both types of the residuals have been essentially reduced after
calibration. In particular, the maximum values have been reduced
by a factor of 4 and 3.5, while the RMS values have been decreased
by a factor of 5.3 and 5.5, respectively.

Hence, the obtained results allow us to improve essentially the
manipulator accuracy for the measurement configurations that
were used in the identification. So, it is reasonable to expect that
using the geometric model, which integrates the identified para-
meters, the desired positioning accuracy for the given test con-
figuration can be also achieved. A more detailed analysis con-
cerning the parameter identification accuracy and its impact on
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the robot positioning accuracy are discussed in the next
subsection.

7.4. Analysis of the identification results

In order to evaluate the calibration results, let us first analyze
the residuals computed from the identification equations for each
coordinate separately. Their histograms are shown in Fig. 10 and
corresponding distributions for each configuration are presented
in Fig. 11. As follows from the analysis, the residuals tend to follow
the normal probability distributions with zero mean and almost
the same parameter σ , which is equal to 0.10 mm, 0.09 mm, and
0.11 mm for X-, Y-, and Z- direction, respectively. The latter justifies
the utilization of ordinary least square technique (with equal
weights) for the parameter identification and allows us to con-
clude that the measurement noise parameter σ in our experiment
is about 0.1 mm.

It is worth mentioning that the noise parameter σ estimated
from the residual analysis is essentially higher than the precision
of the laser tracker measurement system, which is defined in the
technical specifications as 0.01 mm. This difference may be due to
the limitations of the geometric model, which does not take into
account a number of essential features such as the elastostatic
deformations due to gravity forces, the friction/backlash in joints
and other factors that affect the robot repeatability (70.06 mm, as
specified in the data sheets). Nevertheless, the geometric calibra-
tion ensures essential improvement of the robot accuracy in the
unloaded mode. Relevant computations show that for the con-
sidered test-pose, it is possible to achieve a positioning accuracy of
about 0.04 mm that is acceptable for the considered technological
process. On the other hand, this issue motivates further research
devoted to modeling of non-geometric factors and estimation of
relevant parameters.
8. Conclusions

This paper presents a new approach for calibration experi-
ments design for serial industrial robots. This approach employs a
new industry-oriented performance measure, which evaluates the
quality of calibration plan via the manipulator positioning accu-
racy after geometric error compensation, and considers the in-
dustrial requirements associated with the prescribed manu-
facturing task. It is proved that the proposed performance measure
can be presented as the weighted trace of the relevant covariance
matrix, where the weighting coefficients are defined by the cor-
responding test-pose. Such an approach allows us to find the



optimal measurement configurations for calibration experiments
and to improve essentially the robot positioning accuracy for a
desired manipulator test-pose.

Dedicated algorithm for geometric parameter identification is
based on an enhanced partial pose measurement method, which
uses only direct position measurements from an external device
for several end-effector reference points. It allows the user to in-
crease essentially the parameter identification accuracy and to
avoid additional computations of the end-effector orientation
components, which may cause non-homogeneity in relevant
identification equations.

The obtained theoretical results have been validated via experi-
mental study that deals with geometric calibration of a KUKA KR-270
industrial robot. The manipulator geometric parameters have been
identified with accuracy equal to 0.15 mm and 0.01° for linear and
angular ones respectively (in average). These results allowed us to
achieve a manipulator positioning accuracy equals to 0.17 mm, which
is 5.5 times better compared to the non-calibrated robot.
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