Poster De Conférence Année : 2024

Analyzing encrypted traffic using AI models

Résumé

The increasing encryption of internet traffic challenges traditional network analysis tools, driving the need for innovative approaches. This poster outlines our research objectives in developing performant, AI-driven solutions for encrypted traffic analysis. We aim to leverage distributed, in-network AI inference by deploying decomposed AI models across programmable network devices, enabling real-time processing with minimal performance trade-offs. Focusing on the QUIC protocol as a representative case, we will address challenges related to resource constraints, compatibility with network operating systems, and energy efficiency. This work establishes a foundation for our future research, paving the way for high-performance network monitoring solutions.
Fichier principal
Vignette du fichier
Poster - Thesis direction.pdf (388.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04800387 , version 1 (24-11-2024)

Licence

Identifiants

  • HAL Id : hal-04800387 , version 1

Citer

Louis Poidevin, Francoise Sailhan, Johanne Vincent. Analyzing encrypted traffic using AI models. Winter training school: AI for Digital Infrastructure – Digital Infrastructure for AI, Nov 2024, Villeneuve d'Ascq, France. ⟨hal-04800387⟩
27 Consultations
14 Téléchargements

Partager

More